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The expansion and folding of the cerebral cortex occur during brain development and are critical factors that influence cognitive 
ability and sensorimotor skills. The disruption of cortical growth and folding may cause neurological disorders, resulting in severe 
intellectual disability and intractable epilepsy in humans. Therefore, understanding the mechanism that regulates cortical growth 
and folding will be crucial in deciphering the key steps of brain development and finding new therapeutic targets for the congenital 
anomalies of the cerebral cortex. This review will start with a brief introduction describing the anatomy of the brain cortex, followed 
by a description of our understanding of the proliferation, differentiation, and migration of neural progenitors and important genes 
and molecules that are involved in these processes. Finally, various types of disorders that develop due to malformation of the 
cerebral cortex will be discussed.
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ANATOMY OF THE CEREBRAL CORTEX

More than 90% of the surface area of the human cerebral 

cortex is composed of the 6-layered neocortex. Roughly two-

thirds of the cortical surface is folded and located inside the 

sulci. Cortical folding not only enables a reduction of brain 

volume but also optimizes brain connectivity26). The thickness 

of the neocortex ranges from 1 to 3 mm, with thicker sections 

at the top of the gyri than deep inside the sulci44). Regarding 

the cell composition of the cerebral cortex, pyramidal neurons 

(glutamatergic, excitatory), which establish long circuits, are 

the most abundant (80%). Interneurons, on the other hand, 

are gamma-aminobutyric acid-ergic (GABAergic), inhibitory 

neurons that establish local, intracortical connections between 

pyramidal neurons. The neurons are arranged primarily in a 

columnar unit but become organized in layers due to the hor-

izontal, intracortical development of cortical fibers4).

The basic six layers are as follows. 

1) layer I : molecular layer, contains local connecting fibers.

2) layer II : external granular layer, receives corticocortical 

afferents (association and commissural fibers). 

3) layer III : external pyramidal layer, sends corticocortical 
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efferents (association and commissural fibers).

4) layer IV : internal granular cell layer, receives thalamo-

cortical afferents.

5) layer V : internal pyramidal layer, sends the cortico-sub-

cortical efferents (to the striatum, brainstem, and cord). 

6) layer VI : Fusiform or multiform layer, sends corticotha-

lamic efferents.

NORMAL DEVELOPMENT OF THE CORTEX

The cerebral cortex is formed from neuroepithelial cells 

(NECs). In humans, NEC proliferation begins in the 4th week 

of development in the neural plate. NECs proliferate in a sym-

metric fashion (one stem cell divides into two stem cells) until 

neural tube closure is complete9). Afterwards, proliferation 

changes to asymmetric division in which one stem cell pro-

duces one stem cell and one neuron. The differentiated neu-

rons are located in the periphery (primordial plexiform layer 

or preplate [PP]), and as a consequence, the stem cells are 

placed in the deep germinative zone called the ventricular 

zone (VZ)54). In early developmental stages when the distance 

between the VZ and PP is short, the neurons move by somal 

translocation (nucleokinesis). Nucleokinesis occurs by the 

neuron extending a process toward the PP meningeal surface, 

and the nucleus moves toward the surface as the ventricular 

process shortens and is detached from the ventricle. Cajal-

Retzius cells are one of the neurons in the PP that establish the 

first extracortical connections and play a major role in con-

trolling the migration of neurons in the cortical plate (CP). 

The PP is divided into two layers : the superficial marginal 

zone (MZ) and the subcortical layer of the subplate (SP). The 

MZ contains Reelin-positive Cajal-Retzius cells, and the SP 

contains Reelin-negative Cajal-Retzius cells28,34).

New-born excitatory, pyramidal neurons must migrate 

from the VZ where they are born, to near the surface of the 

cortex. This migration is accomplished through a process 

called radial migration41). Radial migration uses radial glial fi-

bers of radial glial cells (RGCs) as a scaffold. RGCs are neuro-

epithelial progenitors that form bipolar radial fibers between 

the ventricular and meningeal surfaces. The newly formed 

neurons travel along the radial glial fiber in the direction per-

pendicular to the cortical surface and are induced to detach 

from the radial glia. The cell-cell interaction between the trav-

elling neuron and RGC is under tight molecular control, and 

also affected by external signals such as Reelin provided by 

Cajal-Retzius cells. The trajectory of the fibers is a key factor 

in defining the migratory route and the final location of the 

new neurons along the cortical surface. The cells that leave the 

ventricular zone in the early stages of development settle in 

the deep layers of the cortex. The cells that exit the ventricular 

zone at later times travel longer distances, passing over previ-

ously born neurons, and settle in the superficial layers of the 

cortex2,15,35). This system explains the inside-out pattern of the 

cortical layers.

One of the major forces of the migration of neurons on 

RGCs is microtubular assembly and function. As a neuron 

wraps around the shaft of an RGC using its leading process, 

the nucleus of the cell moves within the cytoplasm of the lead-

ing process. The leading process slowly extends, and the nu-

cleus follows in a rather stepwise fashion. The conduit for nu-

clear movement in the cytoplasm is a system of microtubules 

and centrosome-like structures termed the basal body. An-

other important player in neuronal migration along RGCs is 

adhesive interactions between cells, as adhesive receptors such 

as integrins promote neuronal extension on the scaffold36).

Along with their role as a guiding scaffold, RGCs have been 

shown to act as progenitor cells that generate both neurons 

and astrocytes. These cells undergo asymmetric division in 

the VZ, producing another RGC and a neural progenitor40). 

The neural progenitors move to the SVZ (subventricular zone) 

and become multipolar, establishing multiple cellular con-

tacts. Then, the neural progenitors move tangentially to de-

tach from the radial glia and scatter throughout the SVZ53).

Interneurons move by another mode of migration in the devel-

oping cortex, tangential migration, in close association with the 

radial migration of the pyramidal neurons. The major cellular 

substrate seems to be the axonal projections that connect pre-ex-

isting neurons. Tangential migration follows specific navigation 

routes. Interneurons are generated in the medial ganglionic emi-

nence and travel parallel to the surface of the hemisphere toward 

the cortex. From the lateral ganglionic eminence, the interneu-

rons rostrally migrate and contribute to the interneurons of the 

olfactory bulb28,44). During this process, the interneurons are 

speculated to acquire laminar address or positional information. 

The interaction of some interneurons with some pyramidal neu-

rons during their migration may allow for the transmission of 

such positional information. Hence, this type of migration may 
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have evolved as a mechanism for increasing the complexity of 

neuronal circuits27,34).

MOLECULES AND GENES

Lis1 and doublecortin (DCX) proteins have been localized 

to microtubules, suggesting that they are involved in microtu-

bule-dependent nuclear movement39). Reelin is an extracellu-

lar matrix protein that is secreted from Cajal-Retzius cells and 

plays a crucial role in the migration of cortical neurons11,14). 

Without Reelin, neurons fail to detach from the RGC and ac-

cumulate underneath the cortical plate.

Fibroblast growth factor (FGF) and its pathway block the 

maturation of cortical progenitors and promote their prolifer-

ation48). FGF also plays a role in the self-amplification of corti-

cal progenitors, resulting in cortical expansion42,43). Other im-

portant signaling pathways suspected to regulate cortical 

progenitor proliferation and self-renewal include the Wnt, 

bone morphogenetic protein (BMP), MAPK, and Notch path-

ways19,32,38). The Notch pathway and retinoic acid signaling are 

known to regulate the balance between progenitor prolifera-

tion and neurogenesis52).

The specific genes associated with cortical malformation 

are listed in Table 1.

MALFORMATIONS

The size and folding of the cerebral cortex have a significant 

impact on brain function and apparently intellectual abili-

ty1,21). It should be noted that the classification of malforma-

tions varies between reports in addition to the one used in this 

review. For example, microcephaly, megalencephaly, and dys-

plasias may be classified as malformations of brain size; lis-

sencephaly and polymicrogyria may be classified as cortical 

folding failure; and subcortical band heterotopia, cobblestone 

brain, and periventricular heterotopia may be classified as ec-

topia17). The variation may be caused because many of the 

anomalies overlap, and the pathomechanisms cannot be sim-

plified into clear-cut categories.

Failure of proliferation/apoptosis
Alterations in proliferation and survival of the neural pro-

genitor may result in abnormal brain size, namely defective 

(microcephaly), excessive (megalencephaly), or imbalanced 

(focal cortical dysplasia [FCD] type II) brain size7).

Microcephaly is a rare condition in which affected patients 

display a significantly small brain size. Genes known to be 

important for various cellular processes, such as DNA repair 

efficiency, cell cycle length, mitotic spindle positioning, and 

centrosome function, are associated with microcephaly56). For 

instance, microcephalin (MCPH1), which lengthens the cell 

cycle and alters the alignment of chromosomes, is one of the 

common causes of primary microcephaly20,25,59). Mutation in 

Table 1. Types of human cortical malformation, altered molecular pathway, associated genes

Malformation Molecular Mechanism Genes

Microcephaly DNA repair efficiency/cell cycle length/mitotic spindle 
positioning/centrosome maturation, duplication, and 
position

MCPH1/ASPM, AKT3/ASPM, STIL, WDR62/NDE1, 
CDK5RAP2

Megalencephaly Cell growth PI3K-AKT signaling AKT3, PIK3R2, PIK3CA

Dysplasia Cell cycle and growth, ribosome biogenesis, mRNA 
translation 

mTOR pathway activation

Lissencephaly type I Radial migration/cortical lamination LIS1, DCX, TUBB3, TUBA1A, RELN/RELN

Cobblestone (Lissencephaly type II) Pial surface stability POMT1, POMT2, FKTN, FKRP

Periventricular heterotopia Actin cytoskeleton/vesicle trafficking/neuronal 
migration/molecular adhesion

FNLA, ARFGEF2, C6orf70, FAT4, DCHS1

Polymicrogyria Cell adhesion, regulation of phosphorylation, cell 
motility, synaptogenesis, angiogenesis/cytoskeleton 
regulation/neurite outgrowth

SPRX2/GPR56/TUBB2B, TUBB3, TUBA1A/KBP

Modified from Fernandez et al.17) with permission. PI3K : phosphatidylinositol 3-kinase, mTOR : mammalian target of rapamycin
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Abnormal Spindle-like, Microcephaly-associated (ASPM), 

which is important in maintaining the orientation of the mi-

totic cleavage plane is also found in microcephaly patients23,29).

Megalencephaly patients show an abnormally enlarged 

brain. It is speculated that megalencephaly is caused by the 

overproduction of progenitor cells and cortical neurons due to 

a shortened cell cycle that results in increased re-entry into the 

cell cycle or to decreased apoptosis12,24,58). Apart from severe 

cases, typical megalencephaly cases show excessive cortical 

folding (polymicrogyria) due to the abundance of progenitor 

cells6). The causal genetic error is under investigation and re-

cent reports suggest that phosphatidylinositol 3-kinase 

(PI3K)-Akt signaling may play a central role in controlling 

brain size13,30,45).

FCD is the most common type of malformation of cortical 

development and frequently presents as epilepsy in children. 

FCD has two features of malformation, cortical disorganiza-

tion and the presence of abnormal cells (neuronal heterotopia, 

balloon cells, neuronal cytomegaly) in abnormal locations37).  

In FCD type II (the subtype with balloon cells or dysmorphic 

neurons), defective proliferation and/or apoptosis of cortical 

progenitors seem to be the pathomechanism. mTOR pathway 

genes are revealed to play important roles in the formation of 

FCD3,10). In contrast, the pathomechanism of FCD type I is 

speculated to be organizational failure, such as lack of tangen-

tial lamination or abnormal retention of radial cortical pat-

tern44).

Failure of migration
Regulation of variables during migration is critical for the 

proper positioning of cortical neurons, including both the lo-

cation and timing of their positioning. In other words, the 

neurons must migrate through the entire thickness of the cor-

tex and stop at the surface of the cortex17). Such a ‘fate’ is 

known to be determined by the time and place of their birth. 

Errors in these events may misplace the neurons, resulting in 

heterotopias. Heterotopias are described by their appearance 

(laminar, nodular) and location (periventricular, transcerebral, 

subcortical, cortical, marginal, and extracortical meningeal).

Lissencephaly includes several types of ‘simplified folding 

pattern’ diseases : agyria, pachygyria, and subcortical band 

heterotopia. Agyria refers to a brain with a complete absence 

of folds, and pachygyria shows a simplified gyral folding pat-

tern22). In subcortical band heterotopia, broad convolutions 

and a thickened cortex are observed in either a normal or sim-

plified gyral pattern.

Type I or classic type lissencephaly is associated with the 

mutation of genes related to the cytoskeleton and cell migra-

tion. LIS1 or DCX are the most commonly mutated genes39). A 

small portion of type I lissencephaly (1–4%) is caused by the 

mutation of TUBB3 or TUBA1A33). Mutations in Reelin 

(RELN), a critical gene for radial migration and cortical lami-

nation, are also found in a minority of type I patients11,14). 

These genetic mutations hinder the proper migration of new-

born neurons, resulting in the accumulation of neurons below 

the PP into disorganized and thickened, 4-layer cortex. The 

thickened cortex is the hallmark finding of lissencephaly, dif-

ferentiating it from the simplified gyral pattern of primary 

microcephaly17).

Type II lissencephaly or cobblestone brain is different from 

other migration disorders (caused by undermigration) in that 

they are formed by overmigration. The anchoring and attach-

ment of the radial glial fibers to the pial membrane is anoma-

lous, resulting in the disruption of the basement membrane. 

As the cortical basement membrane is the end point of the ra-

dial migration of neurons, the disruption leads to the overmi-

gration of the neurons beyond the pia and into the meningeal 

space. This results in the ‘cobblestone’ appearance of the cor-

tical surface31,60). There is a wide spectrum of phenotypes, but 

the known driver genes are related to the attachment of the 

radial glial fiber to the pial surface or are associated with the 

glycosylation of alpha-dystroglycan, which is fundamental in 

the anchoring of the dystrophin complex to the extracellular 

matrix8,47,55).

Periventricular heterotopia is caused by the failure of the ra-

dial migration of cortical neurons. It is speculated that defec-

tive remodeling of the actin cytoskeleton inhibits the proper 

change in cell shape and the locomotion of newborn neurons 

required for migration. This results in the complete failure of 

the neurons to depart from the germinal zone, and instead the 

neurons reside near the ventricular zone clustered into nod-

ules1,49,51). The most frequent genetic alteration in periventricu-

lar heterotopia is the mutation of Filamin A (FLNA) and 

ARFGEF2. FLNA is known to act on the actin skeleton, and 

ARFGEF2 plays a role in the trafficking of intracellular mem-

branes and vesicles16,18,50).

Polymicrogyria is a group of cortical malformations show-

ing abnormally abundant and small cortical folds and the in-
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terdigitation of white matter causing abnormal lamination7). 

The polymicrogyria cortex is either 4-layered or unlayered5,57). 

It is characterized by a malarrangement of the cell layers and 

intracortical fiber plexus. The excessive folding of the upper 

or all cellular layers under the continuous smooth molecular 

layer is also observed. Due to excessive folding, the CP may 

appear thick, although it is actually thinner than under nor-

mal conditions44). The causative genes for polymicrogyria 

have not been identified; however, associations with several 

genetic errors, such as mutations in SPRX2 and genes related 

to the cytoskeleton, have been suggested46).

CONCLUSION

The development of the cerebral cortex is a complex process 

involving the proliferation, migration, and differentiation of 

neural progenitors regulated by multiple genes and molecules 

in a time- and location-specific manner. A clear understand-

ing of this process will lead us to better understand related 

malformations, resulting in more effective treatments and 

preventative therapies for these diseases.
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