Browse > Article
http://dx.doi.org/10.3340/jkns.2019.0098

Normal and Disordered Formation of the Cerebral Cortex : Normal Embryology, Related Molecules, Types of Migration, Migration Disorders  

Lee, Ji Yeoun (Department of Anatomy and Cell Biology, Seoul National University College of Medicine)
Publication Information
Journal of Korean Neurosurgical Society / v.62, no.3, 2019 , pp. 265-271 More about this Journal
Abstract
The expansion and folding of the cerebral cortex occur during brain development and are critical factors that influence cognitive ability and sensorimotor skills. The disruption of cortical growth and folding may cause neurological disorders, resulting in severe intellectual disability and intractable epilepsy in humans. Therefore, understanding the mechanism that regulates cortical growth and folding will be crucial in deciphering the key steps of brain development and finding new therapeutic targets for the congenital anomalies of the cerebral cortex. This review will start with a brief introduction describing the anatomy of the brain cortex, followed by a description of our understanding of the proliferation, differentiation, and migration of neural progenitors and important genes and molecules that are involved in these processes. Finally, various types of disorders that develop due to malformation of the cerebral cortex will be discussed.
Keywords
Cerebral cortex; Embryology; Malformations of cortical development;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM : Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J Neurosci 33 : 10802-10814, 2013   DOI
2 Crino PB, Nathanson KL, Henske EP : The tuberous sclerosis complex. N Engl J Med 355 : 1345-1356, 2006   DOI
3 D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T : A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374 : 719-723, 1995   DOI
4 Dehay C, Kennedy H : Cell-cycle control and cortical development. Nat Rev Neurosci 8 : 438-450, 2007   DOI
5 DiLiberti JH : Inherited macrocephaly-hamartoma syndromes. Am J Med Genet 79 : 284-290, 1998   DOI
6 Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, Walsh CA, et al. : Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27 : 33-44, 2000   DOI
7 Elias LA, Wang DD, Kriegstein AR : Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448 : 901-907, 2007   DOI
8 Ferland RJ, Batiz LF, Neal J, Lian G, Bundock E, Lu J, et al. : Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum Mol Genet 18 : 497-516, 2009   DOI
9 Fernandez V, Llinares-Benadero C, Borrell V : Cerebral cortex expansion and folding: what have we learned? EMBO J 35 : 1021-1044, 2016   DOI
10 Fox JW, Lamperti ED, Eksioglu YZ, Hong SE, Feng Y, Graham DA, et al. : Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21 : 1315-1325, 1998   DOI
11 Raybaud C, Widjaja E : Development and dysgenesis of the cerebral cortex: malformations of cortical development. Neuroimaging Clin N Am 21 : 483-543, vii, 2011   DOI
12 Riviere JB, Mirzaa GM, O'Roak BJ, Beddaoui M, Alcantara D, Conway RL, et al. : De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet 44 : 934-940, 2012   DOI
13 Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA : Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17 : 595-606, 1996   DOI
14 Guerrini R, Marini C : Genetic malformations of cortical development. Exp Brain Res 173 : 322-333, 2006   DOI
15 Roll P, Rudolf G, Pereira S, Royer B, Scheffer IE, Massacrier A, et al. : SRPX2 mutations in disorders of language cortex and cognition. Hum Mol Genet 15 : 1195-1207, 2006   DOI
16 Roscioli T, Kamsteeg EJ, Buysse K, Maystadt I, van Reeuwijk J, van den Elzen C, et al. : Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of alpha-dystroglycan. Nat Genet 44 : 581-585, 2012   DOI
17 Sahara S, O'Leary DD : Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron 63 : 48-62, 2009   DOI
18 Gruber R, Zhou Z, Sukchev M, Joerss T, Frappart PO, Wang ZQ : MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway. Nat Cell Biol 13 : 1325-1334, 2011   DOI
19 Guerrini R, Dobyns WB, Barkovich AJ : Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. Trends Neurosci 31 : 154-162, 2008   DOI
20 Gul A, Hassan MJ, Mahmood S, Chen W, Rahmani S, Naseer MI, et al. : Genetic studies of autosomal recessive primary microcephaly in 33 Pakistani families: novel sequence variants in ASPM gene. Neurogenetics 7 : 105-110, 2006   DOI
21 Hansen DV, Lui JH, Parker PR, Kriegstein AR : Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464 : 554-561, 2010   DOI
22 Siegenthaler JA, Ashique AM, Zarbalis K, Patterson KP, Hecht JH, Kane MA, et al. : Retinoic acid from the meninges regulates cortical neuron generation. Cell 139 : 597-609, 2009   DOI
23 Sarkisian MR, Bartley CM, Chi H, Nakamura F, Hashimoto-Torii K, Torii M, et al. : MEKK4 signaling regulates filamin expression and neuronal migration. Neuron 52 : 789-801, 2006   DOI
24 Sheen VL, Dixon PH, Fox JW, Hong SE, Kinton L, Sisodiya SM, et al. : Mutations in the X-linked filamin 1 gene cause periventricular nodular heterotopia in males as well as in females. Hum Mol Genet 10 : 1775-1783, 2001   DOI
25 Sheen VL, Walsh CA : Periventricular heterotopia: new insights into Ehlers-Danlos syndrome. Clin Med Res 3 : 229-233, 2005   DOI
26 Sun T, Hevner RF : Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci 15 : 217-232, 2014   DOI
27 Super H, Soriano E, Uylings HB : The functions of the preplate in development and evolution of the neocortex and hippocampus. Brain Res Brain Res Rev 27 : 40-64, 1998   DOI
28 van Reeuwijk J, Brunner HG, van Bokhoven H : Glyc-O-genetics of Walker-Warburg syndrome. Clin Genet 67 : 281-289, 2005   DOI
29 Klyachko VA, Stevens CF : Connectivity optimization and the positioning of cortical areas. Proc Natl Acad Sci U S A 100 : 7937-7941, 2003   DOI
30 Jackson AP, Eastwood H, Bell SM, Adu J, Toomes C, Carr IM, et al. : Identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet 71 : 136-142, 2002   DOI
31 Andrade DM : Genetic basis in epilepsies caused by malformations of cortical development and in those with structurally normal brain. Hum Genet 126 : 173-193, 2009   DOI
32 Anton ES, Marchionni MA, Lee KF, Rakic P : Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 124 : 3501-3510, 1997   DOI
33 Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB : A developmental and genetic classification for malformations of cortical development. Neurology 65 : 1873-1887, 2005   DOI
34 Walsh CA : Neuroscience in the post-genome era: an overview. Trends Neurosci 24 : 363-364, 2001   DOI
35 Wang X, Tsai JW, LaMonica B, Kriegstein AR : A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci 14 : 555-561, 2011   DOI
36 Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB : A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135 : 1348-1369, 2012   DOI
37 Barkovich AJ, Kuzniecky RI : Neuroimaging of focal malformations of cortical development. J Clin Neurophysiol 13 : 481-494, 1996   DOI
38 Barkovich AJ, Kuzniecky RI, Dobyns WB, Jackson GD, Becker LE, Evrard P : A classification scheme for malformations of cortical development. Neuropediatrics 27 : 59-63, 1996   DOI
39 Kriegstein AR : Constructing circuits: neurogenesis and migration in the developing neocortex. Epilepsia 46 Suppl 7 : 15-21, 2005   DOI
40 Woods CG, Bond J, Enard W : Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am J Hum Genet 76 : 717-728, 2005   DOI
41 Kriegstein AR, Noctor SC : Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27 : 392-399, 2004   DOI
42 Kumar A, Blanton SH, Babu M, Markandaya M, Girimaji SC : Genetic analysis of primary microcephaly in Indian families: novel ASPM mutations. Clin Genet 66 : 341-348, 2004   DOI
43 Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, Heiberg A, et al. : De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat Genet 44 : 941-945, 2012   DOI
44 Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X : G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108 : 12925-12930, 2011   DOI
45 Walsh CA : Genetic malformations of the human cerebral cortex. Neuron 23 : 19-29, 1999   DOI
46 Machon O, van den Bout CJ, Backman M, Kemler R, Krauss S : Role of beta-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 122 : 129-143, 2003   DOI
47 Yamamoto T, Kato Y, Karita M, Kawaguchi M, Shibata N, Kobayashi M : Expression of genes related to muscular dystrophy with lissencephaly. Pediatr Neurol 31 : 183-190, 2004   DOI
48 Barkovich AJ, Raybaud CA : Malformations of cortical development. Neuroimaging Clin N Am 14 : 401-423, 2004   DOI
49 Buysse K, Riemersma M, Powell G, van Reeuwijk J, Chitayat D, Roscioli T, et al. : Missense mutations in beta-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum Mol Genet 22 : 1746-1754, 2013   DOI
50 Bystron I, Blakemore C, Rakic P : Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9 : 110-122, 2008   DOI
51 Phoenix TN, Temple S : Spred1, a negative regulator of Ras-MAPK-ERK, is enriched in CNS germinal zones, dampens NSC proliferation, and maintains ventricular zone structure. Genes Dev 24 : 45-56, 2010   DOI
52 Morris-Rosendahl DJ, Najm J, Lachmeijer AM, Sztriha L, Martins M, Kuechler A, et al. : Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly. Clin Genet 74 : 425-433, 2008   DOI
53 Nadarajah B, Parnavelas JG : Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3 : 423-432, 2002   DOI
54 O'Leary DD, Borngasser D : Cortical ventricular zone progenitors and their progeny maintain spatial relationships and radial patterning during preplate development indicating an early protomap. Cereb Cortex 16 Suppl 1 : i46-i56, 2006   DOI
55 Olson EC, Walsh CA : Smooth, rough and upside-down neocortical development. Curr Opin Genet Dev 12 : 320-327, 2002   DOI
56 Palmini A, Najm I, Avanzini G, Babb T, Guerrini R, Foldvary-Schaefer N, et al. : Terminology and classification of the cortical dysplasias. Neurology 62(6 Suppl 3) : S2-S8, 2004
57 Pilz DT, Matsumoto N, Minnerath S, Mills P, Gleeson JG, Allen KM, et al. : LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 7 : 2029-2037, 1998   DOI
58 Pontious A, Kowalczyk T, Englund C, Hevner RF : Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci 30 : 24-32, 2008   DOI
59 Rakic P : A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18 : 383-388, 1995   DOI
60 Rash BG, Lim HD, Breunig JJ, Vaccarino FM : FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis. J Neurosci 31 : 15604-15617, 2011   DOI