• 제목/요약/키워드: brain activation

검색결과 717건 처리시간 0.034초

Investigation of light stimulated mouse brain activation in high magnetic field fMRI using image segmentation methods

  • Kim, Wook;Woo, Sang-Keun;Kang, Joo Hyun;Lim, Sang Moo
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권12호
    • /
    • pp.11-18
    • /
    • 2016
  • Magnetic resonance image (MRI) is widely used in brain research field and medical image. Especially, non-invasive brain activation acquired image technique, which is functional magnetic resonance image (fMRI) is used in brain study. In this study, we investigate brain activation occurred by LED light stimulation. For investigate of brain activation in experimental small animal, we used high magnetic field 9.4T MRI. Experimental small animal is Balb/c mouse, method of fMRI is using echo planar image (EPI). EPI method spend more less time than any other MRI method. For this reason, however, EPI data has low contrast. Due to the low contrast, image pre-processing is very hard and inaccuracy. In this study, we planned the study protocol, which is called block design in fMRI research field. The block designed has 8 LED light stimulation session and 8 rest session. All block is consist of 6 EPI images and acquired 1 slice of EPI image is 16 second. During the light session, we occurred LED light stimulation for 1 minutes 36 seconds. During the rest session, we do not occurred light stimulation and remain the light off state for 1 minutes 36 seconds. This session repeat the all over the EPI scan time, so the total spend time of EPI scan has almost 26 minutes. After acquired EPI data, we performed the analysis of this image data. In this study, we analysis of EPI data using statistical parametric map (SPM) software and performed image pre-processing such as realignment, co-registration, normalization, smoothing of EPI data. The pre-processing of fMRI data have to segmented using this software. However this method has 3 different method which is Gaussian nonparametric, warped modulate, and tissue probability map. In this study we performed the this 3 different method and compared how they can change the result of fMRI analysis results. The result of this study show that LED light stimulation was activate superior colliculus region in mouse brain. And the most higher activated value of segmentation method was using tissue probability map. this study may help to improve brain activation study using EPI and SPM analysis.

S1P1 Regulates M1/M2 Polarization toward Brain Injury after Transient Focal Cerebral Ischemia

  • Gaire, Bhakta Prasad;Bae, Young Joo;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.522-529
    • /
    • 2019
  • M1/M2 polarization of immune cells including microglia has been well characterized. It mediates detrimental or beneficial roles in neuroinflammatory disorders including cerebral ischemia. We have previously found that sphingosine 1-phospate receptor subtype 1 ($S1P_1$) in post-ischemic brain following transient middle cerebral artery occlusion (tMCAO) can trigger microglial activation, leading to brain damage. Although the link between $S1P_1$ and microglial activation as a pathogenesis in cerebral ischemia had been clearly demonstrated, whether the pathogenic role of $S1P_1$ is associated with its regulation of M1/M2 polarization remains unclear. Thus, this study aimed to determine whether $S1P_1$ was associated with regulation of M1/M2 polarization in post-ischemic brain. Suppressing $S1P_1$ activity with its functional antagonist, AUY954 (5 mg/kg, p.o.), attenuated mRNA upregulation of M1 polarization markers in post-ischemic brain at 1 day and 3 days after tMCAO challenge. Similarly, suppressing $S1P_1$ activity with AUY954 administration inhibited M1-polarizatioin-relevant $NF-{\kappa}B$ activation in post-ischemic brain. Particularly, $NF-{\kappa}B$ activation was observed in activated microglia of post-ischemic brain and markedly attenuated by AUY954, indicating that M1 polarization through $S1P_1$ in post-ischemic brain mainly occurred in activated microglia. Suppressing $S1P_1$ activity with AUY954 also increased mRNA expression levels of M2 polarization markers in post-ischemic brain, further indicating that $S1P_1$ could also influence M2 polarization in post-ischemic brain. Finally, suppressing $S1P_1$ activity decreased phosphorylation of M1-relevant ERK1/2, p38, and JNK MAPKs, but increased phosphorylation of M2-relevant Akt, all of which were downstream pathways following $S1P_1$ activation. Overall, these results revealed $S1P_1$-regulated M1/M2 polarization toward brain damage as a pathogenesis of cerebral ischemia.

Inhibition of $NF-{\kappa}B$ Activation Increases Oxygen-Glucose Deprivation-Induced Cerebral Endothelial Cell Death

  • Lee, Jin-U;Kim, Chul-Hoon;Shim, Kyu-Dae;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.65-71
    • /
    • 2003
  • Increasing evidences suggest that ischemia-induced vascular damage is an integral step in the cascade of the cellular and molecular events initiated by cerebral ischemia. In the present study, employing a mouse brain endothelioma-derived cell line, bEnd.3, and oxygen-glucose deprivation (OGD) as an in vitro stroke model, the role of nuclear factor kappa B (NF-${\kappa}B$) activation during ischemic injury was investigated. OGD was found to activate NF-${\kappa}B$ and to induce bEnd.3 cell death in a time-dependent manner. OGD phosphorylated neither 32 Ser nor 42 Tyr of $I{\kappa}B{\alpha}$. OGD did not change the amount of $I{\kappa}B{\alpha}$. The extents of OGD-induced cell death after 8 h, 10 h, 12 h and 14 h of OGD were 10%, 35%, 60% and 85%, respectively. Reperfusion following OGD did not cause additional cell death, indicating no reperfusion injury after ischemic insult in cerebral endothelial cells. Three known as NF-${\kappa}B$ inhibitors, including pyrrolidine dithiocarbamate (PDTC) plus zinc, aspirin and caffeic acid phenethyl ester (CAPE), inhibited OGD-induced NF-${\kappa}B$ activation and increased OGD-induced bEnd.3 cell death in a dose dependent manner. There were no changes in the protein levels of bcl-2, bax and p53 which are modulated by NF-${\kappa}B$ activity. These results suggest that NF-${\kappa}B$ activation might be a protective mechanism for OGD-induced cell death in bEnd.3.

시각적 공간자극에 나타난 뇌파반응의 자극 정도와 만족도 변화특성 - 할로겐 조명과 벽의 영향을 중심으로 - (The Change Characteristic of the Stimulation and Satisfaction of the Brain Wave Reaction to the Visual Stimulation in the Space - Focus on the Influence of the Halogen and Wall -)

  • 서지은
    • 한국실내디자인학회논문집
    • /
    • 제24권5호
    • /
    • pp.99-107
    • /
    • 2015
  • The purpose of this study is to analyze the change of visual stimulus of users to the space through the experiment of EEG and the satisfaction of users depends on the lighting. To do that, the results measured with EEG experiment focusing on Beta ${\beta}$ were compared to each other to figure out difference in the changes of the activation of human brain on lighting's situation as the lighting off and on in the same space. The difference in the results was verified according to the characteristic of users which classified with 4 types of the spatial sensitivities. The results of this study are as following. Firstly, the spacial sensitivity of user is to communicate well with the different senses with stimulus through interaction among the elements. At this time, the brain plays a major role in build the spacial sensitivity of users as the place to make form. Secondly, there are the differences in the activation of brain depends on lighting situation even in the same space. The stimulus into the brain became generally stronger in images with lighting on than off. Especially, the response in the occipital lobe which connected with the visual center turn out strongly in the image of 'modern natural'. Because the visual stimulus interact well with the bright color, the reflectional texture and the rough texture painted the dark color. Thirdly, the satisfaction of users changed with lighting in the space. But we could know that the satisfaction of users isn't be related to the visual stimulus through the results of this study. Finally, there isn't the difference in the activation degree of brain according to the characteristic which are preference of users into 4 types of the spatial sensitivity through the results came from ANCOVA(analysis of covariance) with SPSS Program 22.

생물전공 대학생과 비전공 대학생의 생명과학 학습에서 자기조절 과정의 두뇌 활성 분석 (Analysis of Brain Activation on the Self-Regulation Process in College Life Science Learning between Biology Major and Non-Major Students)

  • 이수민;박상희;권승혁;권용주
    • 과학교육연구지
    • /
    • 제46권3호
    • /
    • pp.255-265
    • /
    • 2022
  • 본 연구의 목적은 생명과학 학습에서 생물학 전공자와 비전공 대학생의 자기조절 과정에서 나타나는 뇌 활성을 분석하고 비교하는 것이다. 자기조절과제는 생물분류 개념으로 생명과학 학습상황을 구현하였다. 대학생들의 뇌 활성은 fNIRS에 의해 측정되고 분석되었다. 동화 과정에서 양측 FP와 좌 DLPFC는 유의미한 활성이 나타났으며, 두 그룹은 동기부여 및 보상과 관련된 좌측 OFC 활성에서 차이를 보였다. 갈등 과정에서 왼쪽 DLPFC는 공통적으로 활성이 현저히 낮았으며, 두 그룹은 최근 메모리와 관련된 BA46과 장기 메모리와 관련된 BA47의 활성에서 차이를 보였다. 동화 과정에서 우측 DLPFC에서 유의하게 높은 활성이 공통적으로 발견되었으며, 두 그룹은 우측 DLPFC와 우측 FP의 활성의 차이를 보였다. 이 영역들은 오른쪽 전두엽 영역에 있으며 생명과학 지식의 이해와 관련이 있다. 본 연구 결과 생물학 전공 대학생과 비전공 대학생의 뇌 활성 패턴은 자기조절 과정에서 차이가 있음을 알 수 있었다. 또한 자기조절에 대한 신경학적 연구를 추가로 제안하고 학교 환경에서 구성할 수 있는 시스템과 학습전략을 제시할 수 있을 것이다.

ZrN 및 TiN 코팅된 치과교정 용 미니나사의 표면특성과 전기화학적 거동 (Surface Characteristics and Electrochemical Behaviors of TiN and ZrN Coated Orthodontic Mini-screw)

  • 김신영;문영필;박근형;조호형;김원기;손미경;최한철
    • 한국표면공학회지
    • /
    • 제41권5호
    • /
    • pp.232-239
    • /
    • 2008
  • The dental orthodontic mini-screw requires good mechanical properties and high corrosion resistance for implantation in the bone. The purpose of this study was to investigate the electrochemical characteristics of TiN and ZrN coated orthodontic mini-screws, mini-screws were used for experiment. Ion plating was carried out for mini-screw using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen w as o bserved with f ield emission scanning e lectron microscopy ( FE-SEM), e nergy dispersive x-ray spectroscopy (EDX), and electrochemical tester. The surface of TiN and ZrN coated mini-screw were more smooth than that of other kinds of non-coated mini-screw due to dercrease of machined defects. The corrosion current density of the TiN and ZrN coated mini-screw decreased compared to non-coated sample. The corrosion potential of TiN and ZrN coated mini-screw were higher than that of non-coated mini-screw in 0.9% NaCl solution. The pitting corrosion resistance increased in the order of ZrN coated, TiN coated and non-coated wire. Pitting potential of ZrN coated mini-screw was the highest in the other specimens.

Anterior Cingulate Cortex and Amygdala Dysfunction Among Patients with Alcohol Dependency During Exposure to Negative Emotional Stimuli

  • Park, Mi-Sook
    • 감성과학
    • /
    • 제21권4호
    • /
    • pp.103-112
    • /
    • 2018
  • This study aimed to identify specific psychological and brain activation responses relating to the processing of negative emotions in patients with alcohol dependency. The authors hypothesized that patients with alcohol dependency would demonstrate the abnormal functioning of brain regions involved in negative emotions. Eleven male patients diagnosed with alcohol dependence in an inpatient alcohol treatment facility and 13 social drinkers with similar demographics were scanned using functional magnetic resonance imaging (fMRI) as they viewed film clips that evoked negative emotions. During exposure to negative emotional stimuli, the control group evinced significantly greater activity in the right anterior cingulate cortex (ACC) in comparison to patients with alcohol dependency. Correlation analyses demonstrated a negative association in the relationship between beta values from the right ACC and amygdala in participants classified in the control group. No statistically significant relationship was observed for blood oxygenation level-dependent (BOLD) changes between the two regions in the patient group during the elicitation of negative emotions. On the other hand, patients exhibited a greater activation of the amygdala as negative emotions were induced. These results suggest that alcoholism presents pathophysiology of brain activation that is distinct from the responses of healthy individuals functioning as controls.

Minocycline Directly Blocks Activation of Caspases After Oxidative Stress in PC12 Cells

  • Choi, Yu-Keum;Kim, Gab-Seok;Han, Byung-Hee
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.79.2-79.2
    • /
    • 2003
  • Minocycline is known to protect neurons from microglia-mediated cell death in many experimental models of brain diseases including ischemic stroke, Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), traumatic brain injury, multiple sclerosis, and Parkinson's disease. Activation of caspase-2, 3, 8, and 9 was evident within 2-8 hr following oxidative insult with 0.5 mM hydrogen peroxide in PC12 cells. Minocycline significantly attenuated activation of these caspases up to 18 hr, resulting a significant increase in cell viability as assessed by MTT assay. (omitted)

  • PDF

Global Scaling 분석방법에 따른 기능적 자기공명영상의 비교 연구 (Comparative Study of Functional Magnetic Resonance Imaging by Global Scaling Analysis)

  • 유동수
    • Investigative Magnetic Resonance Imaging
    • /
    • 제10권1호
    • /
    • pp.26-31
    • /
    • 2006
  • 목적 : 감각 및 운동기능에 대한 기능적 자기공명영상에서 데이터 분석 시 global scaling이 뇌 활성화 영상에 미치는 영향을 알아보고자 하였다. 대상 및 방법 : 신경학적 병력이 없는 정상 성인 피검자 4명을 대상으로 하였다. 운동기능은 오른쪽 상지를 구부렸다가 폈다가를 반복하는 운동을 시행하였고 청각기능은 1 KHz 순음자극을 시행하였다. 기능적 자기공명영상은 3.0T 자기공명영상기기(GE, Milwaukee, USA)에서 BOLD-EPI 기법을 사용하였고 데이터 분석은 SPM2를 사용하였다. 데이터 분석 시 움직임 보정, 통계적 유의 수준 등은 동일하게 한 상태에서 global scaling의 시행 전후의 뇌 활성화 영상을 획득하였다. 결과 : 오른쪽 상지운동에 대한 기능영상에서 global scaling 효과를 고려하지 않은 경우와 고려한 경우의 뇌 활성화 영상의 차이는 크지 않았다 (p<0.000001). 청각기능 검사에서는 global scaling 효과를 고려한 경우에서 고려하지 않은 경우에 비해 뇌 활성화 영상이 훨씬 크게 나타났다 (p<0.05). 결론 : 국소적 BOLD 신호의 변화가 작은 기능영상 검사에서는 데이터 분석 시 global scaling이 뇌 활성화 결과에 큰 영향을 미칠 수 있으므로 주의가 요구된다.

  • PDF

Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling

  • Canmin Zhu;Dili Wang;Chang Chang;Aofei Liu;Ji Zhou;Ting Yang;Yuanfeng Jiang;Xia Li;Weijian Jiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권3호
    • /
    • pp.239-252
    • /
    • 2024
  • Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 ㎍/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 ㎍/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.