• Title/Summary/Keyword: box-behnken design

Search Result 180, Processing Time 0.027 seconds

Optimization of mixing ratio in preparation of gluten-free rice udon through response surface methodology (반응 표면 분석법을 이용한 글루텐 프리 쌀 우동 제조 최적화)

  • Park, Se-Jin;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.739-748
    • /
    • 2021
  • This study focuses on the use of rice in the production of gluten-free rice udon (GFU) through an optimized mixing ratio, using the Box-Behnken response surface methodology (RSM). Different additional levels of rice flour (A, 40-60 g), acetylated distarch adipate (B, 10-20 g), and trehalose (C, 0-3 g) were used as variables, while water absorption level, volume, cooking loss, solid yield, lightness, texture properties, proximate compositions of GFU and turbidity of cooking water were set as responses in the RSM design model. The optimum mixing ratio for the preparation of gluten-free rice udon was obtained for 60.00 g of rice flour, 18.81 g of acetylated distarch adipate without the addition of trehalose. The response values of the optimized samples were water absorption (60.94%), volume (34.94%), turbidity of the cooking water (0.37), cooking loss (4.77%), solid yield (1.55 g), lightness value (70.04), hardness (2.53 N), springiness (0.18), gumminess (10.45 N), chewiness (1.83 N), and cohesiveness (2.89). This study has shown that rice flour can replace wheat flour to manufacture udon at an optimized mixing ratio successfully derived by statistical estimation method.

A Study on the Multi-Objective Optimization of Impeller for High-Power Centrifugal Compressor

  • Kang, Hyun-Su;Kim, Youn-Jea
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a method for the multi-objective optimization of an impeller for a centrifugal compressor using fluid-structure interaction (FSI) and response surface method (RSM) was proposed. Numerical simulation was conducted using ANSYS CFX and Mechanical with various configurations of impeller geometry. Each design parameter was divided into 3 levels. A total of 15 design points were planned using Box-Behnken design, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of the DOE were used to find the optimal shape of the impeller. Two objective functions, isentropic efficiency and equivalent stress were selected. Each objective function is an important factor of aerodynamic performance and structural safety. The entire process of optimization was conducted using the ANSYS Design Xplorer (DX). The trade-off between the two objectives was analyzed in the light of Pareto-optimal solutions. Through the optimization, the structural safety and aerodynamic performance of the centrifugal compressor were increased.

Optimization of Medium for the Carotenoid Production by Rhodobacter sphaeroides PS-24 Using Response Surface Methodology (반응 표면 분석법을 사용한 Rhodobacter sphaeroides PS-24 유래 carotenoid 생산 배지 최적화)

  • Bong, Ki-Moon;Kim, Kong-Min;Seo, Min-Kyoung;Han, Ji-Hee;Park, In-Chul;Lee, Chul-Won;Kim, Pyoung-Il
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.1
    • /
    • pp.135-148
    • /
    • 2017
  • Response Surface Methodology (RSM), which is combining with Plackett-Burman design and Box-Behnken experimental design, was applied to optimize the ratios of the nutrient components for carotenoid production by Rhodobacter sphaeroides PS-24 in liquid state fermentation. Nine nutrient ingredients containing yeast extract, sodium acetate, NaCl, $K_2HPO_4$, $MgSO_4$, mono-sodium glutamate, $Na_2CO_3$, $NH_4Cl$ and $CaCl_2$ were finally selected for optimizing the medium composition based on their statistical significance and positive effects on carotenoid yield. Box-Behnken design was employed for further optimization of the selected nutrient components in order to increase carotenoid production. Based on the Box-Behnken assay data, the secondary order coefficient model was set up to investigate the relationship between the carotenoid productivity and nutrient ingredients. The important factors having influence on optimal medium constituents for carotenoid production by Rhodobacter sphaeroides PS-24 were determined as follows: yeast extract 1.23 g, sodium acetate 1 g, $NH_4Cl$ 1.75 g, NaCl 2.5 g, $K_2HPO_4$ 2 g, $MgSO_4$ 1.0 g, mono-sodium glutamate 7.5 g, $Na_2CO_3$ 3.71 g, $NH_4Cl$ 3.5g, $CaCl_2$ 0.01 g, per liter. Maximum carotenoid yield of 18.11 mg/L was measured by confirmatory experiment in liquid culture using 500 L fermenter.

Structure Design Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Design of Experiments (실험계획법을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 구조설계 민감도 해석)

  • Kim, Hun-Gwan;Song, Chang Yong;Lee, Kangsu
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.98-106
    • /
    • 2021
  • The paper deals with comparative study on sensitivity analysis using various methods regarding to design of experiments for structure design of an active type DSF (Deck support frame) that was developed for float-over installation of offshore plant. The thickness sizing variables of structure member of the active type DSF were considered the design factors. The output responses were defined from the weight and the strength performances. Various methods such as orthogonal array design, Box-Behnken design, and Latin hypercube design were applied to the comparative study. In order to evaluate the approximation performance of the design space exploration according to the design of experiments, response surface method was generated for each design of experiment, and the accuracy characteristics of the approximation were reviewed. The design enhancement results such as numerical costs, weight minimization, etc. via the design of experiment methods were compared to the results of the best design. The orthogonal array design method represented the most improved results for the structure design of the active type DSF.

Study on the Optimization of Pulse GTAW Process for Diaphragm with Thin Thickness (극박 다이아프램의 펄스 GTAW 공정 최적화에 관한 연구)

  • Park, Hyoung-Jin;Hwang, In-Sung;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • This paper has aimed to prevent excessive heat input by controlling arc distribution and heat input capacity with pulse GTAW in order to improve weld quality in 0.08mm pressure gauge diaphragm and flange welding parts. A design of experiment was designed using Box-Behnken method to optimize a welding process. The pulse GTAW parameters such as pulse current, base current, pulse duty, frequency and welding speed were set to input variables while hydraulic pressure that represents welding characteristics in diaphragm and flange joint were set to output variables. Based on the test result, a second regression equation was obtained between input and output variables and turned out significant. Besides, an influence of parameters has been confirmed through response surface analysis using the second-order regression equation and optimum welding condition was obtained through a grid-search method. The optimum welding condition was set to pulse current 84.4(A), base current 29.6(A), pulse duty 58.8(%), frequency 10(%), and welding speed 596(mm/min). Then, decent bead shape was acquired with no excessive heat input under the $2.3kgf/cm^2$ of hydrostatic pressure.

Response Surface Modeling for the Adsorption of Dye Eosin Y by Activated Carbon Prepared from Waste Citrus Peel (폐감귤박으로 만든 활성탄을 이용한 염료 Eosin Y 흡착에서 반응표면 모델링)

  • Kam, Sang-Kyu;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.270-277
    • /
    • 2018
  • The adsorption of Eosin Y by the activated carbon (WCAC) prepared from waste citrus peel was investigated by using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. Experiments were carried out as per BBD with three input parameters, the Eosin Y concentration (Conc. : 30~50 mg/L), the solution temperature (Temp. : 293~313 K), and the adsorbent dose (Dose : 0.05~0.15 g/L). Regression analysis showed a good fit of the experimental data to the second-order polynomial model with coefficients of the determination ($R^2$) value of 0.9851 and P-value (Lack of fit) of 0.342. An optimum dye uptake of 59.3 mg/g was achieved at the dye concentration of 50 mg/L, the temperature of 333 K, and the adsorbent dose of 0.1056 g. The adsorption process of Eosin Y by WCAC can be well described by the pseudo second order kinetic model. The experimental data followed the Langmuir isotherm model.

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study

  • Bahrami, Mehdi;Karimi-Sabet, Javad;Hatamnejad, Ali;Dastbaz, Abolfazl;Moosavian, Mohammad Ali
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2241-2255
    • /
    • 2018
  • RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.

Electrospun polyamide thin film composite forward osmosis membrane: Influencing factors affecting structural parameter

  • Ghadiri, Leila;Bozorg, Ali;Shakeri, Alireza
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.417-429
    • /
    • 2019
  • Poly Sulfone nanofibers were electrospun to fabricate membranes of different characteristics. To fabricate the fiber mats, polymer concentration, flowrate, and current density were determined as the most influencing factors affecting the overall performance of the membranes and studied through Response Surface Methodology. The Box-Behnken Design method (three factors at three levels) was used to design, analyze, and optimize the parameters to achieve the best possible performance of the electrospun membranes in forward osmosis process. Also, internal concentration polarization that characterizes the efficiency of the forward osmosis membranes was determined to better assess the overall performance of the fabricated electrospun membranes. Water flux to reverse salt flux was considered as the main response to assess the performance of the membranes. As confirmed experimentally, best membrane performance with the minimal structural parameter value could be achieved when predicted optimal values were used to fabricate the membranes through electrospinning process.

OPTIMIZATION OF A CENTRIFUGAL COMPRESSOR IMPELLER AND DIFFUSER USING A RESPONSE SURFACE METHOD (반응면기법을 이용한 원심압축기 최적설계)

  • Kim, S.M.;Park, J.Y.;Ahn, K.Y.;Baek, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.92-99
    • /
    • 2007
  • In this paper, optimization of the vaned centrifugal compressor was carried out at a given mass flow rate condition. Firstly, impeller optimization was conducted using response surface method (RSM) which is one of optimization methods. After the optimization of the impeller was completed, diffuser optimization was performed with the optimized impeller. In these processes, Navier-Stokes solver was used to calculate the flow inside the centrifugal compressor. And the optimization is performed with Box-Behnken design method which is efficient for fitting second-order response surfaces to reduce the number of calculations required. As a result, compared with the reference model, the efficiency and the pressure ratio of the optimized impeller and diffuser are found to be increased. The performance at off-design conditions is presented.

  • PDF

Some 3-Level Spherical Designs for Response Surface Experiments: Designs Constructed for the Radius of the Spherical Experimental Region to Vary with the Number of Factors (반응표면실험을 위한 3-수준 구형(球形) 실험설계: 구형 실험지역의 반경이 요인 수에 따라 변화하도록 구축된 설계)

  • 이우선;임성수
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.1
    • /
    • pp.24-40
    • /
    • 2001
  • Response surface designs can be classified, according to the shape of the experimental region, into spherical designs and cuboidal designs. Among the central composite design(CCD)s and the Box-Behnken design(BBD)s that are popular in practice, when the number of factors is k, spherical designs are tile CCDs with the axial value being $\sqrt{\textit{k}}$ and the BBDs, and cuboidal designs are the CCDs with the axial value being 1. With the CCDs having $\sqrt{\textit{k}}$ as the axial value, the radius of the experimental region varies with number of factors, but these designs are the 5-level designs. With the BBDs that are 3-level designs, the radius of the experimental region does not vary with the number of factors. In this article, we propose tile 3-level spherical designs which are constructed so that tile radius of the experimental region varies with the number of factors.

  • PDF