Browse > Article
http://dx.doi.org/10.14478/ace.2017.1130

Response Surface Modeling for the Adsorption of Dye Eosin Y by Activated Carbon Prepared from Waste Citrus Peel  

Kam, Sang-Kyu (Department of Chemical Engineering, Pukyong National University)
Lee, Min-Gyu (Department of Environmental Engineering, Jeju National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.3, 2018 , pp. 270-277 More about this Journal
Abstract
The adsorption of Eosin Y by the activated carbon (WCAC) prepared from waste citrus peel was investigated by using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. Experiments were carried out as per BBD with three input parameters, the Eosin Y concentration (Conc. : 30~50 mg/L), the solution temperature (Temp. : 293~313 K), and the adsorbent dose (Dose : 0.05~0.15 g/L). Regression analysis showed a good fit of the experimental data to the second-order polynomial model with coefficients of the determination ($R^2$) value of 0.9851 and P-value (Lack of fit) of 0.342. An optimum dye uptake of 59.3 mg/g was achieved at the dye concentration of 50 mg/L, the temperature of 333 K, and the adsorbent dose of 0.1056 g. The adsorption process of Eosin Y by WCAC can be well described by the pseudo second order kinetic model. The experimental data followed the Langmuir isotherm model.
Keywords
adsorption; eosin Y; activated carbon; citrus peel waste; response surface methodology;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 G. Annadurai, R. S. Juang, and D. J. Lee, Use of cellulose-based wastes for adsorption of dyes from aqueous solutions, J. Hazard. Mater., 92, 263-274 (2002).   DOI
2 R. Sivaraj, C. Namasivayam, and K. Kadirvelu, Orange peel as an adsorbent in the removal of Acid Violet 17 (acid dye) from aqueous solutions, Waste Manag., 21, 105-110 (2001).   DOI
3 S. S. Azhar, A. G. Liew, D. Suhardy, K. F. Hafiz, and M. D. I. Hatim, Dye removal from aqueous solution by using adsorption on treated sugarcane bagasse, Am. J. Appl. Sci., 2, 1499-1503 (2005).   DOI
4 G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol., 97, 1061-1085 (2006).   DOI
5 C. Namasivayam, N. Muniasamy, K. Gayatri, M. Rani, and K. Ranganathan, Removal of dyes from aqueous solutions by cellulo- sic waste orange peel, Bioresour. Technol., 57, 37-43 (1996).   DOI
6 M. G. Lee, S. K. Kam, and K. H. Suh, Adsorption of non-degrad- able eosin Y by activated carbon, J. Environ. Sci. Int., 21, 623-631 (2012).   DOI
7 M. Arami, N. Y. Limaee, N. M. Mahmoodi, and N. S. Tabrizi, Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies, J. Colloid Interface Sci., 288, 371-376 (2005).   DOI
8 V. Gomez, M. S. Larrechi, and M. P. Callao, Kinetic and adsorp- tion study of acid dye removal using activated carbon, Chemosphere, 69, 1151-1158 (2007).   DOI
9 R. Ahmad, Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP), J. Hazard. Mater., 171, 767-773 (2009).   DOI
10 T. Anitha, K. P. Senthil, and K. K. Sathish, Synthesis of nano-sized chitosan blended polyvinyl alcohol for the removal of eosin yellow dye from aqueous solution, J. Water Process Eng., 13, 127-136 (2016).   DOI
11 S. Budavari, The Merck Index, 11th ed., Merck & Co., 564, NJ, USA (1996).
12 S. H. Jang and E. H. Kim, A fundamental study color removal of dyeing wastewater using low cost adsorbents, Korean J. Sanit., 14, 40-45 (1999).
13 Y. S. Ho and G. Mckay, Batch lead (II) removal from aqueous solution by peat: Equilibrium and kinetics, Process Saf. Environ. Prot., 77, 165-173 (1999).   DOI
14 S. Elemen, E. P. Akcakoca Kumbasar, and S. Yapar, Modeling the adsorption of textile dye on organoclay using an artificial neural network, Dyes Pigm., 95, 102-111 (2012).   DOI
15 S. Nawaz, H. N. Bhatti, T. H. Bokhari, and S. Sadaf, Removal of novacron golden yellow dye from aqueous solutions by low-cost agricultural waste: batch and fixed bed study, Chem. Ecol., 30, 52-65 (2014).   DOI
16 M. R. Mafra, L. Igarashi-Mafra, L. Zuim, E. C. Vasques, and M. A. Ferreira, Adsorption of remazol brilliant blue on an orange peel adsorbent, Braz. J. Chem. Eng., 30, 657-665 (2013).   DOI
17 M. Ozacar and I. A. Sengil, Adsorption of metal complex dyes from aqueous solutions by pine sawdust, Bioresour. Technol., 96, 791-795 (2005).   DOI
18 K. S. Low and C. K. Lee, Quaternized rice husk as sorbent for reactive dyes, Bioresour. Technol., 61, 121-125 (1997).   DOI
19 L. Borah, M. Goswami, and P. Phukan, Adsorption of methylene blue and eosin yellow using porous carbon prepared from tea waste: Adsorption equilibrium, kinetics and thermodynamics study, J. Environ. Chem. Eng., 3, 1018-1028 (2015).   DOI
20 S. K. Ponnusamy, R. Subramaniam, and S. Kannaiyan, Removal of methylene blue dye from aqueous solution by activated carvon prepared from cashew nut shell as a new low cost adsorbent, Korean J. Chem. Eng., 28, 149-155 (2010).
21 S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of activated carbon prepared from waste citrus peels by KOH activation, Appl. Chem. Eng., 28(6), 649-654 (2017).   DOI
22 S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of acetone, benzene, and metylmercaptan by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 28(6), 663-669 (2017).   DOI
23 S. K. Kam, K. H. Kang, and M. G. Lee, Adsorption characteristics of acetone, benzene, and metylmercaptan in the fixed bed reactor packed with activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 29(1), 28-36 (2018).   DOI
24 M. K. Purkait, S. DasGupta, and S. De, Adsorption of eosin dye on activated carbon and its surfactant based desorption, J. Environ. Manage., 76, 135-142 (2005).   DOI
25 A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review, J. Hazard. Mater., 167, 1-9 (2009).   DOI
26 S. Lagergren, About the theory of so-called adsorption of soluble substances, Kunglia Svenska Vetenskapsakademiens Handlingar, 24, 1-39 (1898).
27 I. Langmuir, The adsorption of gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-140 (1918).   DOI
28 H. M. F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57, 385-470 (1906).
29 R. Gong, X. Liu, M. Feng, J. Liang, W. Cai, and N. Li, Comparative study of methylene blue sorbed on crude and monosodium glutamate functionalized sawdust, J. Health Sci., 54, 623-628 (2008).   DOI
30 M. Hema and S. Arivoli, Comparative study on the adsorption kinetics and thermodynamics of dyes onto acid activated low cost carbon, Int. J. Phys. Sci., 2, 10-17 (2007).
31 G. O. El-Sayed, Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber, Desalination, 272, 225-232 (2011).   DOI
32 R. Gong, Y. Ding, M. Li, C. Yang, H. Liu, and Y. Sun, Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution, Dyes Pigm., 64, 187-192 (2005).   DOI
33 U. R. Lakshmi, V. C. Sreivastava, I. D. Mall, and D. H. Lataye, Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for indigo carmine dye, J. Environ. Manage., 90, 710-720 (2009).   DOI
34 K. Porkodi and K. V. Kumar, Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green, crystal violet single component systems, J. Hazard. Mater., 143, 311-327 (2007).   DOI