• Title/Summary/Keyword: box girder bridges

Search Result 333, Processing Time 0.026 seconds

Verification Study of Train/Bridge Interaction Analysis through Field Tests of a High Speed Railway Bridge (고속철도 교량의 속도별 주행시험을 통한 교량/열차 상호작용해석의 검증)

  • Kim, Sung-Il;Lee, Joo-Beom;Kim, Hyun-Min;Lee, Hee-Up
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1555-1561
    • /
    • 2011
  • The dynamic behavior of a bridge under moving loads has been investigated over many years. Especially, with the introduction of High Speed Railway, numerous theoretical studies on the interaction problem between bridges and trains are carried out. In the present study, advanced bridge/train interaction analyses are performed and compared with field tests of a simply-supported 40m long PSC box girder bridge of Kyung-Bu High Speed Railway. Vertical displacements and vertical accelerations of a bridge with increasing speeds are analyzed. In addition, wheel load reduction rates and accelerations of a car-body of the train are investigated for a study of appropriateness of traffic safety criteria of bridge design specification.

  • PDF

Anchorage Zone Behavior and Analysis of Precast Prestressed Concrete Box-Girder Bridges (프리캐스트 프리스트레스트 콘크리트(PC) 박스거더 교량의 정착부 거동 및 해석)

  • 오병환;임동환;이명규;백신원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.36-41
    • /
    • 1994
  • 프리캐스트 프리스트레스트 콘크리트 상자형 교량의 정착부에 프리스트레스 힘이 도입되면, 과다한 국부집중 하중으로 인하여 균열이 발행할 수 있으며, 최근 이러한 교량의 건설시 텐던을 따라가며 심각한 균열이 발생한 경우가 있다. 본 논문은 프리캐스트 프리스트레스트 콘크리트 상자형 교량의 정착부에 발생하는 국부집중 응력의 분포 특성을 규명하고, 이를 토대로 파괴기구 고찰함에 목적이 있다. 이를 위하여 정착부 파괴에 직접적인 영향을 미치는 단면의 형상, 텐던의 배치상태, 국부보강 철근의 형태 및 구조보강 철근량 등을 변수로 하는 역학적 거동 실험 및 해석 연구가 수행되었다. 위의 실험 및 해석연구결과 정착부 파괴양상이 규명되었으며, 프리스트레스 정착부의 새로운 파괴기구 개념이 제시되어, 정착부 파괴과정을 적절히 설명하고 있다.

  • PDF

A Study on the Effect of a Series of Trucks on Dynamic load Factor (연속 차량하중에 의한 충격하중의 영향에 관한 연구)

  • 황의성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.105-110
    • /
    • 1992
  • This study deals with the effect of a series of moving trucks on the Dynamic Load Factor (DLF). The DLF is calculated by investigating the load effect of moving trucks. Therefore, analytical models for frocks, bridge, and road profiles were developed and dynamic structural analysis computer program were developed. Then the DLFs are calculated as a ratio of maximum dynamic load effect and maximum static load effect. Trucks used in this study are 5 axle semi tractor-trailer with the weight of 36 and 54 ton. Simply supported prestressed concrete box girder bridges with 20 and 40m span length are selected. From the results of the DLF for various headway distances, they show a very scattered and relatively high values of the DLF in case of a 20m span length bridge. For a 40m span length bridge, the results show less scattered and small increase of the DLF compared to a 20m span length bridge.

  • PDF

Estimation of Dynamic Displacements from Strain Signal using Mode Shapesof Simply Supported Beam (단순보 모드형상을 이용하여 변형률 신호에서 동적변위 응답 추정)

  • Shin, Soo-Bong;Lee, Seon-Ung;Han, Ah-Reum-Sam;Kim, Hyun-Su;Kim, Hee-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.326-331
    • /
    • 2009
  • An algorithm is proposed for computing dynamic displacements of a bridge using FBG sensors. An existing algorithm for estimating dynamic displacements of a simply supported beam through mode superposition is extended and applied to various types of bridges with bending and torsional modes. The proposed algorithm is examined through field tests on a suspension span steel deck plate box girder bridge. Guidelines are provided for determining the number of modes and the number of strain gages to be used.

  • PDF

Probabilistic condition assessment of structures by multiple FE model identification considering measured data uncertainty

  • Kim, Hyun-Joong;Koh, Hyun-Moo
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.751-767
    • /
    • 2015
  • A new procedure is proposed for assessing probabilistic condition of structures considering effect of measured data uncertainty. In this procedure, multiple Finite Element (FE) models are identified by using weighting vectors that represent the uncertainty conditions of measured data. The distribution of structural parameters is analysed using a Principal Component Analysis (PCA) in relation to uncertainty conditions, and the identified models are classified into groups according to their similarity by using a K-means method. The condition of a structure is then assessed probabilistically using FE models in the classified groups, each of which represents specific uncertainty condition of measured data. Yeondae bridge, a steel-box girder expressway bridge in Korea, is used as an illustrative example. Probabilistic condition of the bridge is evaluated by the distribution of load rating factors obtained using multiple FE models. The numerical example shows that the proposed method can quantify uncertainty of measured data and subsequently evaluate efficiently the probabilistic condition of bridges.

Development of BIM based Programs for Design and Drawing of PSC Box Girder Bridges (BIM 기반의 PSC 박스 교량 설계 자동화 및 도면 관리 툴 개발)

  • Hwang, Kyu-Hwan;Ahn, Do-Hwan;Seok, Hyun-Su;Shim, Chang-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.97-100
    • /
    • 2010
  • 3차원 정보모델에 기반한 설계 자동화 프로그램의 개발은 좀 더 완성도가 높은 설계안을 도출할 수 있는 방안을 제시할 수 있다. 콘크리트 교량의 설계 과정에서 정형화된 구조 검토 단계 부분을 자동화하고 설계자로 하여금 좀 더 창의적인 설계가 가능하도록 지원하는 시스템을 개발하였다. 특히, 3차원 Building Information Modeling 기반의 프리스트레스트 콘크리트 박스 거더교에 대한 설계 자동화 시스템을 개발하였다. 이를 위하여 3차원 렌더링 알고리즘을 사용하여, 사용자가 원하는 단면 위치 및 분류 체계에 따라 설계를 자동으로 수행할 수 있도록 적용하였다. 또한 생성된 도면은 데이터 호환이 가능함으로써, 사용자의 편의성이 향상될 것으로 판단된다. 이는 설계자동화 분야에서 강교에 국한되었던 점을 콘크리트교를 포함한 주요 교량으로 확대하고 설계 성과품으로 3차원 모델을 도출할 뿐 아니라 2차원 도면을 연계하도록 구성하여 토목 엔지니어의 기술력을 향상시킬 것으로 기대된다.

  • PDF

Dynamic Response Analysis of Curved Bridge-AGT Vehicle Interaction System (곡선 교량과 AGT 차량의 상호작용에 의한 동적 응답 해석)

  • 이안호;송재필;김기봉
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.721-726
    • /
    • 2002
  • The topic on today is dynamic response analysis of curved bridge-AGT(Automated Guide-way Transit) vehicle interaction system. Rubber wheel type AGT vehicle is adopted in this study, and the vehicle is idealized as three dimensional eleven DOF model. Three types of composited steel box girder bridges are modelized with F.E. method. And three types of artificially generated surface roughnesses are adopted for analysis. The dynamic equations of curved bridge, AGT vehicle and surface roughness are derived by using Lagrange's equation of motion. And the equations are solved by Newmark-${\beta}$ method. As a result, The dynamic increasement factor is inverse proportional to radius curvature.

  • PDF

Seismic Fragility Analysis for Probabilistic Seismic Performance Evaluation of Multi-Degree-of-Freedom Bridge Structures (확률론적 내진성능평가를 위한 다자유도 교량구조물의 지진취약도해석)

  • Jin, He-Shou;Song, Jong-Keol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.269-272
    • /
    • 2008
  • The seismic fragility curves of a structure represents the probability of exceeding the prescribed structural damage given various levels of ground motion intensityand the seismic fragility curve is essential to evaluation of structural performance and assessment of risk and loss of structures. The purpose of this paper is to develop seismic fragility functions for bridge structures in Koreaby reviewing those of advanced countries. Therefore, at first, we investigated development conditions of the seismic fragility functions. And the next highway bridges in Korea are classified into a number of categories and several typical bridges are selected to estimate seismic fragilities for using this analysis method in Korea. Finally, fragility curves for PSC Box girder bridge are estimated. The results show that the bridge classification and damage state play an important role in estimation of seismic damage and seismic fragility analysis for bridge structures.

  • PDF

A Study on the Distortional Analysis of Curved Steel Box Girders and Determination of Diaphragm Spacing (곡선 강상자형 거더의 뒤틀림 해석 및 격벽간격산정)

  • Koo, Min Se;Yoon, Wo Hyun;Lee, Ho Kyoung;Kim, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.125-135
    • /
    • 2003
  • A 3-dimensional model of curved steel box girder bridges without diaphragm was presented. This model yielded results that were consistent with those of the parameter analysis using the BEF and Ritz methods. Se veralmodels with diaphragms were analyzed to estimate the appropriate diaphragm spacing. In case of 50m span, models A-10, A-20, A-30, B-10, B-20, and B-30 were found to have 5(8.3m), 7(6.25m), 8(5.5m), 4(10m), 6(7.1m), and 7(6.25m) diaphragms, respectively. In addition, a formula that presents the ratio of distortional stress to bending stresswas created from the results of the 3-dimensional FEM model analysis.

Evaluation of Static Strength of Group Stud Shear Connection in Precast Concrete Deck Bridges (프리캐스트 콘크리트 바닥판 교량의 그룹 스터드 전단연결부 강도평가)

  • Shim, Chang Su;Jeon, Seung Min;Kim, Dong Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.333-345
    • /
    • 2008
  • concrete deck bridges are increasingly aplied to twin- girder bridges and open-stel box girder bridges.One of the most dificult isues in the design of shear conect ors is the mater of achieving ful composite action. Many connectors in smal area require a significant section los of precast decks resulting in difficult reinforcement details. In this closer spacing than the required minimum spacing in the design codes was evaluated through static tests. Test results s howed that the ultimate strength decreased as the conector spacing was reduced. The strength enhancement was observed due to aditional reinforcement for precast slabs or for shear pockets. Thus, the design of group stud shear connection needs to anticipate failure modes and the conector failure should be induced. Based on the test results, an empirical equation consi dering stud spacing was proposed to evaluate the ultimate strength of group stud shear conection. Fatigue tests showed n o reduction in fatigue life of the group stud shear conection in the range of this research. Details of the precast decks wer e enhanced using the findings of the study.