• Title/Summary/Keyword: bounded control

Search Result 515, Processing Time 0.032 seconds

QFT Parameter-Scheduling Control Design for Linear Time- varying Systems Based on RBF Networks

  • Park, Jae-Weon;Yoo, Wan-Suk;Lee, Suk;Im, Ki-Hong;Park, Jin-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.484-491
    • /
    • 2003
  • For most of linear time-varying (LTV) systems, it is difficult to design time-varying controllers in analytic way. Accordingly, by approximating LTV systems as uncertain linear time-invariant, control design approaches such as robust control have been applied to the resulting uncertain LTI systems. In particular, a robust control method such as quantitative feedback theory (QFT) has an advantage of guaranteeing the frozen-time stability and the performance specification against plant parameter uncertainties. However, if these methods are applied to the approximated linear. time-invariant (LTI) plants with large uncertainty, the resulting control law becomes complicated and also may not become ineffective with faster dynamic behavior. In this paper, as a method to enhance the fast dynamic performance of LTV systems with bounded time-varying parameters, the approximated uncertainty of time-varying parameters are reduced by the proposed QFT parameter-scheduling control design based on radial basis function (RBF) networks.

Inverse optimal control of nonlinear systems with structural uncertainty (구조적 불확실성을 갖는 비선형 시스템의 역최적제어)

  • Lee, Sang-Hun;Kim, Jin-Soo;Lee, Jong-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2651-2659
    • /
    • 2009
  • In this paper, inverse optimal control for nonlinear systems with structural uncertainty is considered. The first, the bounded of structural uncertainty is introduced and based on the control Lyapunov function, a theorem for the globally asymptotic stability is presented. From this a less conservative condition for the inverse optimal control is derived. The result is used to design an inverse optimal controller for a class of nonlinear systems, that improves and extends the existing results. The class of nonlinear system considered is also enlarger. The simulation results show the effectiveness of the method.

A Study on the Improvement of Convergence for a Discrete-time Learning Controller by Approximated Inverse Model (근사 역모델에 의한 이산시간 학습제어기의 수렴성 개선에 관한 연구)

  • Moon, Myung-Soo;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.101-105
    • /
    • 1989
  • The iterative learning controller makes the system output follow the desired output over a finite time interval through iterating trials. In this paper, first we discuss that the design problem of learning controller is originally the design problem of the inverse model. Then we show that the tracking error which is the difference between the desired output and the system output is reduced monotonically by properly modeled inverse system if the magnitude of the learning operator being introduced is bounded within the unit circle in complex domain. Also it would be shown that the conventional learning control method is a kind of extremely simplified inverse model learning control method of the objective controlled system. Hence this control method can be considered as a generalization of the conventional learning control method. The more a designer model the objective controlled system precisely, the better the performance of the approximated inverse model learning controller would be. Finally we compare the performance of the conventional learning control method with that of the approximated inverse model learning control method by computer simulation.

  • PDF

On the Design of Simple-structured Adaptive Fuzzy Logic Controllers

  • Park, Byung-Jae;Kwak, Seong-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.93-99
    • /
    • 2003
  • One of the methods to simplify the design process for a fuzzy logic controller (FLC) is to reduce the number of variables representing the rule antecedent. This in turn decreases the number of control rules, membership functions, and scaling factors. For this purpose, we designed a single-input FLC that uses a sole fuzzy input variable. However, it is still deficient in the capability of adapting some varying operating conditions although it provides a simple method for the design of FLC's. We here design two simple-structured adaptive fuzzy logic controllers (SAFLC's) using the concept of the single-input FLC. Linguistic fuzzy control rules are directly incorporated into the controller by a fuzzy basis function. Thus some parameters of the membership functions characterizing the linguistic terms of the fuzzy control rules can be adjusted by an adaptive law. In our controllers, center values of fuzzy sets are directly adjusted by an adaptive law. Two SAFLC's are designed. One of them uses a Hurwitz error dynamics and the other a switching function of the sliding mode control (SMC). We also prove that 1) their closed-loop systems are globally stable in the sense that all signals involved are bounded and 2) their tracking errors converge to zero asymptotically. We perform computer simulations using a nonlinear plant.

A New PID Controller with Lyapunov Stability for Regulation Servo Systems

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.11-18
    • /
    • 2009
  • In this paper, the stability of second order uncertain systems with regulation of PID type controllers is analyzed by using Lyapunov second method for the first time in the time domain. The property of the stability of PID regulation servo systems is revealed in sense of Lyapunov, i.e., bounded stability due to the disturbances and uncertainties. By means of the results of this stability analysis, the maximum norm bound of the error from the output without variation of the uncertainties and disturbances is determined as a function of the gains of the PID control, which make it enable to analyze the effect resulted from the variations of the disturbances and uncertainties using this norm bound for given PID gains. Using the relationship of the error from the output without variation of the uncertainties and disturbances and the PID gain with maximum bounds of the disturbances and uncertainties, the robust gain design rule is suggested so that the error from the output without the variation of the disturbances and uncertainties can be guaranteed by the prescribed specifications as the advantages of this study. The usefulness of the proposed algorithm is verified through an illustrative example.

  • PDF

Robust Stability Analysis and Design of Fuzzy Model Based Feedback Linearization Control Systems (퍼지 모델 기반 피드백 선형화 제어 시스템의 강인 안정성 해석과 설계)

  • 박창우;이종배;김영욱;성하경
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.79-90
    • /
    • 2004
  • Systematical robust stability analysis and design scheme for the feedback linearization control systems via fuzzy modeling are proposed. It is considered that uncertainty and disturbances are included in the Takagi-Sugeno fuzzy models representing the nonlinear plants. Robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions and by converting the analysis and design problems into the linear matrix inequality optimization, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

A force-Guided Control with Adaptive Accommodation Bor Complex Assembly

  • Sungchul Kang;Kim, Munsang;Lee, Chong W.;Lee, Kyo-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.14-19
    • /
    • 1998
  • In this paper, a target approachable force-guided control with adaptive accommodation for the complex assembly is presented. The complex assembly (CA) is defined as a task which deals with complex shaped parts including concavity or whose environment is so complex that unexpected contacts occur frequently during insertion. CA tasks are encountered frequently in the field of the manufacturing automation and various robot applications. To make CA successful, both the bounded wrench condition and the target approachability condition should be satisfied simultaneously during insertion. By applying the convex optimization technique, an optimum target approaching twist can be determined at each instantaneous contact state as a global minimum solution. Incorporated with an admissible perturbation method, a new CA algorithm using only the sensed resultant wrench and the target twist is developed without motion planning nor contact analysis which requires the geometry of the part and the environment. Finally, a VME-bus based real-time control system is built to experiment various CA task. T-insertion task as a planar CA and double-peg assembly task as a spacial assembly were successfully executed by implementing the new force-guided control with adaptive accommodation.

  • PDF

Robust DTC Control of Doubly-Fed Induction Machines Based on Input-Output Feedback Linearization Using Recurrent Neural Networks

  • Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Fai, Jawad
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.719-725
    • /
    • 2011
  • This paper describes a novel Direct Torque Control (DTC) method for adjustable speed Doubly-Fed Induction Machine (DFIM) drives which is supplied by a two-level Space Vector Modulation (SVM) voltage source inverter (DTC-SVM) in the rotor circuit. The inverter reference voltage vector is obtained by using input-output feedback linearization control and a DFIM model in the stator a-b axes reference frame with stator currents and rotor fluxes as state variables. Moreover, to make this nonlinear controller stable and robust to most varying electrical parameter uncertainties, a two layer recurrent Artificial Neural Network (ANN) is used to estimate a certain function which shows the machine lumped uncertainty. The overall system stability is proved by the Lyapunov theorem. It is shown that the torque and flux tracking errors as well as the updated weights of the ANN are uniformly ultimately bounded. Finally, effectiveness of the proposed control approach is shown by computer simulation results.

A Time-Varying Gain Super-Twisting Algorithm to Drive a SPIM

  • Zaidi, Noureddaher;Jemli, Mohamed;Azza, Hechmi Ben;Boussak, Mohamed
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.955-963
    • /
    • 2013
  • To acquire a performed and practical solution that is free from chattering, this study proposes the use of an adaptive super-twisting algorithm to drive a single-phase induction motor. Partial feedback linearization is applied before using a super-twisting algorithm to control the speed and stator currents. The load torque is considered an unknown but bounded disturbance. Therefore, a time-varying switching gain that does not require prior knowledge of the disturbance boundary is proposed. A simple sliding surface is formulated as the difference between the real and desired trajectories obtained from the indirect rotor flux oriented control strategy. To illustrate the effectiveness of the proposed control structure, an experimental setup around a digital signal processor (dS1104) is developed and several tests are performed.

Economic Valuation of Official Management for Invasive Insects and Diseases in Fruits (과실 병해충에 대한 공적방제조치의 가치분석)

  • Kwon, Daeyoung;Son, Minsu;Kim, Brian H.S.
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.4
    • /
    • pp.67-76
    • /
    • 2014
  • The objective of this study is to estimate the economic value of official management and control for invasive insects and diseases in fruits. The direct and indirect effect of this control measure can be the changes in price of fruits and related goods, changes in export volume of domestic fruits, changes in total volume of fruit production, and reduce the risk in food safety. The contingent valuation method with the single-bounded dichotomous choice is employed to estimate each household's willingness-to-pay (WTP) to maintain official management and control measures. The total number of sample consists 2,050 respondents between the ages of 19-60 years, and the survey is conducted using Web-based survey. The estimated results for mean WTP is 5,443won per month per household. Therefore, the total economic value of official management and control on fruit in Korea is estimated to be approximately 94.4 billion won per month.