• Title/Summary/Keyword: bounded control

Search Result 515, Processing Time 0.032 seconds

Integral sliding Mode Control with High-gain Observer (고이득 관측기를 이용한 적분 슬라이딩 모드 제어)

  • Oh, Seung-Rohk;Shin, Jun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.233-236
    • /
    • 2002
  • We consider a single-input-single-output nonlinear system which can be represented in a normal form. The nonlinear system has a modeling uncertainties including the input coefficient uncertainties. A high-gain observer is used to estimate the states variables to reject a modeling uncertainty. A globally bounded output feedback integral sliding mode control is proposed to stabilize the closed loop system. The proposed integral sliding mode control can asymptotically stabilize the closed loop system in the it presence of input coefficient uncertainty.

  • PDF

On Guaranteed Cost Control of Uncertain Neutral Systems (섭동을 갖는 뉴트럴 시스템의 성능보장 안정화에 관하여)

  • Park, Ju-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.129-133
    • /
    • 2003
  • In this paper, we consider the robust guaranteed cost control problem for a class of uncertain neutral systems with given quadratic cost functions. The uncertainty is assumed to be norm-bounded and time-varying. The goal in this study is to design the memoryless state feedback controller such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound lot all admissible uncertainty. Some criteria for the existence of such controllers are derived based on the matrix inequality approach combined with the Lyapunov second method. A parameterized characterization of the robust guaranteed cost controllers is given in terms of the feasible solutions to the certain matrix inequalities. A numerical example is given to illustrate the proposed method.

Exact Reshaping of Motor Dynamics in Flexible-Joint Robot using Integral Manifold Feedback Control (유연관절로봇의 모터 동역학을 정확하게 재설정하기 위한 적분매니폴드 피드백제어 개발)

  • Park, Young-Jin;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • In this paper, an exact reshaping method for the motor dynamics of a flexible-joint robot is proposed using an integral manifold approach. Obtaining the exact model for both motor-side and link-side dynamics of a flexible-joint robot is difficult due to its under-actuated nature and complex dynamics. Despite the simple structure of the motor-side dynamics, they are difficult to model accurately for a flexible-joint robot due to motor disturbances, especially when speed reducers such as harmonic drives are installed. An integral manifold feedback control (IMFC) is proposed to reshape the motor dynamics. Based on the integral manifold approach, it is theoretically proved that the IMFC reshapes motor dynamics exactly even with bounded disturbances such as motor friction. The performance of the proposed IMFC is verified experimentally using a single degree-of-freedom flexible-joint robot under gravity conditions.

Robust pole placement condition using generalized singular value (일반화된 특이치를 사용한 강인한 극배치 조건)

  • Lee, Jun-Hwa;Gwon, Uk-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.13-19
    • /
    • 1995
  • In this paper, generalized singular value is defined. Using the generalized singular value, robust stability conditions and robust pole placement conditions of structured uncertain systems with star shaped uncertainties are derived. Especially, norm bounded and polytopic uncertainty regions are considered as star shaped uncertainty regions. Linear matrix inequality problems are proposed in order to compute the upper bound of the generalized singular value. The proposed linear matrix inequality problems can be solved by using the convex optimization method.

  • PDF

Design of new sliding mode control system using discrete-time switching dynamics and its stability analysis (이산 시간 스위칭 다이나믹을 이용한 새로운 슬라이딩 모드 제어 시스템의 설계 및 안정도 해석)

  • 김동식;서호준;서삼준;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.407-414
    • /
    • 1996
  • In this paper we consider the variable structure control for a class of discrete-time uncertain multivariable systems where the nominal system is linear. Discrete-time switching dynamics are introduced so that a new type of state trajectories called sliding mode may exist on the sliding surface by state feedback. The quantitative analysis for the matched uncertainties will show that every response of the system with the proposed switching dynamics is bounded within small neighborhoods of the state-space origin. Also, by the similarity transformation it will be shown that the eigenvalues of the closed-loop systems are composed of those of the subsystems which govern the range-space dynamics and null-space dynamics. It will be also shown that ideal sliding mode can be obtained in the absence of uncertainties due to one-step attraction to the sliding surface regardless of initial position of states. (author). 12 refs., 2 figs.

  • PDF

NON-FRAGILE GUARANTEED COST CONTROL OF UNCERTAIN LARGE-SCALE SYSTEMS WITH TIME-VARYING DELAYS

  • Park, Ju-H.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.61-76
    • /
    • 2002
  • The robust non-fragile guaranteed cost control problem is studied in this paper for class of uncertain linear large-scale systems with time-varying delays in subsystem interconnections and given quadratic cost functions. The uncertainty in the system is assumed to be norm-hounded arid time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound far all admissible uncertainties. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost contrellers is 7iven in terms of the feasible solution to a certain LMI. Finally, in order to show the application of the proposed method, a numerical example is included.

Direct Adaptive Fuzzy Controller for Nonaffine Nonlinear System (비어파인 비선형 시스템에 대한 직접 적응 퍼지 제어기)

  • 박장현;김성환;박영환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.315-322
    • /
    • 2004
  • A direct adaptive state-feedback controller for highly nonlinear systems is proposed. This paper considers uncertain or ill-defined nonaffine nonlinear systems and employs a static fuzzy logic system (FLS). The employed FLS estimates. and adaptively cancels an unknown plant nonlinearity using its proved universal approximation property. A control law and adaptive laws for unknown fuzzy parameters and bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov. The tracking error is guaranteed to be uniformly asymptotically stable rather than uniformly ultimately bounded with the aid of an additional robustifying control term. No a priori knowledge of an upper bound on an lumped uncertainty is required.

A Robust Adaptive Friction Control of Robot Manipulators using Sliding Surface (슬라이딩 표면을 이용한 로봇 매니퓰레이터의 강건한 적응 마찰 제어)

  • Bae, Jun-Kyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2139-2146
    • /
    • 2011
  • In this paper, a robust adaptive controller is proposed for trajectory tracking of robot manipulators with the unknown friction coefficient and bounded disturbance. A new adaptive control law is developed based on sliding mode and derived from the Lyapunov stability analysis. The introduction of a boundary layer solves the problem of chattering. The proposed adaptive controller is globally asymptotically stable and guarantees zero steady state error for joint positions. The estimated friction coefficients can also approach the actual coefficients asymptotically. A simulation example is provided to demonstrate the performance of the proposed algorithm.

[ $H_{\infty}$ ] Tracking Control of Time-delayed Linear Systems with Saturating Actuators (포화 구동기를 갖는 시간지연 선형시스템의 $H_{\infty}$ 추종 제어기)

  • Yi, Yearn-Gui;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.668-676
    • /
    • 2008
  • In this paper, we considered the $H_{\infty}$ tracking control for time-delayed linear systems with saturating actuators. The considered time delay is a time varying one having bounded magnitude and rate, and the considered tracking reference is a general one only known its bounds of magnitude and rate. First, we have converted the $H_{\infty}$ tracking control problem into an equivalent $H_{\infty}$ disturbance attenuation problem using two steps of transformations. Next, based on a new Lyapunov-Krasovskii functional, we have derived the result in the form of LMI with two non-convex parameters. Finally, by numerical examples, we have shown the usefulness and effectiveness of our result.

Adaptive Sliding Mode Control for Nonholonomic Mobile Robots with Model Uncertainty and External Disturbance (모델 불확실성과 외란이 있는 이동 로봇을 위한 적응 슬라이딩 모드 제어)

  • Park, Bong-Seok;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1644-1645
    • /
    • 2007
  • This paper proposes an adaptive sliding mode control method for trajectory tracking of nonholonomic mobile robots with model uncertainties and external disturbances. The kinematic model represented by polar coordinates are considered to design a robust control system. Wavelet neural networks (WNNs) are employed to approximate arbitrary model uncertainties in dynamics of the mobile robot. From the Lyapunov stability theory, we derive tuning algorithms for all weights of WNNs and prove that all signals of an adaptive closed-loop system are uniformly ultimately bounded.

  • PDF