• Title/Summary/Keyword: boundary-value problem

Search Result 601, Processing Time 0.032 seconds

LERAY-SCHAUDER DEGREE THEORY APPLIED TO THE PERTURBED PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.219-231
    • /
    • 2009
  • We show the existence of at least four solutions for the perturbed parabolic equation with Dirichlet boundary condition and periodic condition when the nonlinear part cross two eigenvalues of the eigenvalue problem of the Laplace operator with boundary condition. We obtain this result by using the Leray-Schauder degree theory, the finite dimensional reduction method and the geometry of the mapping. The main point is that we restrict ourselves to the real Hilbert space instead of the complex space.

  • PDF

UNIQUENESS OF IDENTIFYING THE CONVECTION TERM

  • Cheng, Jin;Gen Nakamura;Erkki Somersalo
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.405-413
    • /
    • 2001
  • The inverse boundary value problem for the steady state heat equation with convection term is considered in a simply connected bounded domain with smooth boundary. Taking the Dirichlet to Neumann map which maps the temperature on the boundary to the that flux on the boundary as an observation data, the global uniqueness for identifying the convection term from the Dirichlet to Neumann map is proved.

  • PDF

THREE POINT BOUNDARY VALUE PROBLEMS FOR THIRD ORDER FUZZY DIFFERENTIAL EQUATIONS

  • Murty, M.S.N.;Kumar, G. Suresh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.101-110
    • /
    • 2006
  • In this paper, we develop existence and uniqueness criteria to certain class of three point boundary value problems associated with third order nonlinear fuzzy differential equations, with the help of Green's functions and contraction mapping principle.

  • PDF

FUNCTIONAL ITERATIVE METHODS FOR SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS

  • Lim, Hyo Jin;Kim, Kyoum Sun;Yun, Jae Heon
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.733-745
    • /
    • 2013
  • In this paper, we first propose a new technique of the functional iterative methods VIM (Variational iteration method) and NHPM (New homotopy perturbation method) for solving two-point boundary value problems, and then we compare their numerical results with those of the finite difference method (FDM).

ON THE BOUNDARY VALUE PROBLEMS FOR LOADED DIFFERENTIAL EQUATIONS

  • Dzhenaliev, Muvasharkhan T.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.1031-1042
    • /
    • 2000
  • The equations prescribed in Ω⊂R(sup)n are called loaded, if they contain some operations of the traces of desired solution on manifolds (of dimension which is strongly less than n) from closure Ω. These equations result from approximations of nonlinear equations by linear ones, in the problems of optimal control when the control when the control actions depends on a part of independent variables, in investigations of the inverse problems and so on. In present work we study the nonlocal boundary value problems for first-order loaded differential operator equations. Criterion of unique solvability is established. We illustrate the obtained results by examples.

  • PDF

POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC SINGULAR BOUNDARY VALUE PROBLEMS IN A BALL

  • Lokenath Debnath;Xu, Xing-Ye
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.237-249
    • /
    • 2004
  • This paper deals with existence of positive solutions of nonlinear elliptic singular boundary value problems in a ball. It is shown that results of Grandall et al. [1] and [2] follow as special cases of our results proved in this article.

CUBIC SPLINE METHOD FOR SOLVING TWO-POINT BOUNDARY-VALUE PROBLEMS

  • Al Said, Eisa-A.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.759-770
    • /
    • 1998
  • In this paper we use uniform cubic spline polynomials to derive some new consistency relations. These relations are then used to develop a numerical method for computing smooth approxi-mations to the solution and its first second as well as third derivatives for a second order boundary value problem. The proesent method out-performs other collocations finite-difference and splines methods of the same order. numerical illustratiosn are provided to demonstrate the practical use of our method.

ON DICHOTOMY AND CONDITIONING FOR TWO-POINT BOUNDARY VALUE PROBLEMS ASSOCIATED WITH FIRST ORDER MATRIX LYAPUNOV SYSTEMS

  • Murty, M.S.N.;Kumar, G. Suresh
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1361-1378
    • /
    • 2008
  • This paper deals with the study of dichotomy and conditioning for two-point boundary value problems associated with first order matrix Lyapunov systems, with the help of Kronecker product of matrices. Further, we obtain close relationship between the stability bounds of the problem on one hand, and the growth behaviour of the fundamental matrix solution on the other hand.

An Existence Result for Neumann Type Boundary Value Problems for Second Order Nonlinear Functional Differential Equation

  • Liu, Yuji
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.637-650
    • /
    • 2008
  • New sufficient conditions for the existence of at least one solution of Neumann type boundary value problems for second order nonlinear differential equations $$\array{\{{p(t)\phi(x'(t)))'=f(t,x(t),\;x(\tau_1(t)),\;{\cdots},\;x(\tau_m(t))),\;t\in[0,T],\\x'(0)=0,\;x'(T)=0,}\,}$$, are established.

EXISTENCE THEOREMS OF BOUNDARY VALUE PROBLEMS FOR FOURTH ORDER NONLINEAR DISCRETE SYSTEMS

  • YANG, LIANWU
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.5_6
    • /
    • pp.399-410
    • /
    • 2019
  • In the manuscript, we concern with the existence of solutions of boundary value problems for fourth order nonlinear discrete systems. Some criteria for the existence of at least one nontrivial solution of the problem are obtained. The proof is mainly based upon the variational method and critical point theory. An example is presented to illustrate the main result.