• Title/Summary/Keyword: boundary-layer stress

Search Result 249, Processing Time 0.03 seconds

A Boundary-layer Stress Analysis of Laminated Composite Beams via a Computational Asymptotic Method and Papkovich-Fadle Eigenvector (전산점근해석기법과 고유벡터를 이용한 복합재료 보의 경계층 응력 해석)

  • Sin-Ho Kim;Jun-Sik Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.41-47
    • /
    • 2024
  • This paper utilizes computational asymptotic analysis to compute the boundary layer solution for composite beams and validates the findings through a comparison with ANSYS results. The boundary layer solution, presented as a sum of the interior solution and pure boundary layer effects, necessitates a mathematically rigorous formalization for both interior and boundary layer aspects. Computational asymptotic analysis emerges as a robust technique for addressing such problems. However, the challenge lies in connecting the boundary layer and interior solutions. In this study, we systematically separate the principles of virtual work and the principles of Saint-Venant to tackle internal and boundary layer issues. The boundary layer solution is articulated by calculating the Papkovich-Fadle eigenfunctions, representing them as linear combinations of real and imaginary vectors. To address warping functions in the interior solutions, we employed a least squares method. The computed solutions exhibit excellent agreement with 2D finite element analysis results, both quantitatively and qualitatively. This validates the effectiveness and accuracy of the proposed approach in capturing the behavior of composite beams.

Prediction of Wall Shear Stresses in Transitional Boundary Layers Using Near-Wall Mean Velocity Profiles

  • Jeon, Woo-Pyung;Shin, Sung-Ho;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1305-1318
    • /
    • 2000
  • The local wall shear stress in transitional boundary layer was estimated from the near-wall mean velocity data using the principle of Computational Preston Tube Method(CPM). The previous DNS and experimental databases of transitional boundary layers were used to demonstrate the accuracy of the method and to provide the applicable range of wall unit y(sup)+. The skin friction coefficients predicted by the CPM agreed well with those from previous studies. To reexamine the applicability of CPM, near-wall hot-wire measurement were conducted in developing transitional boundary layers on a flat plate with different freestream turbulence intensities. The intermittency profiles across the transitional boundary layers were reasonably obtained from the conditional sampling technique. An empirical correlation between the representative intermittency near the wall and free parameter K$_1$of the extended wall function of CPM has been newly proposed using the present and other experimental data. The CPM has been verified as a useful tool to measure the wall shear stress in transitional boundary layer with reasonable accuracy.

  • PDF

FLUID DYNAMIC IMPLICATIONS OF THE INTERMITTENCY OF TURBULENT MOMENTUM TRANSPORT IN THE OCEANIC TURBULENT BOUNDARY LAYER (海洋 亂流境界層內 斷續性의 流體力學的 意義)

  • Chung, Jong Yul;Grosch, Chester E.
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.104-110
    • /
    • 1983
  • The Intermittent phenomena of the turbulent momentrm transports were closely examined in order to know the nature of intermittency and its fluid dynamic implications in the oceanic turbulent boundary layer. Also the connection between the observed intermittency and the bursting phenomenon was studied in detail. In this investigation, strong intermittency of turbulent momentum transports were found and the peak values of Reynolds stress (i,e., u'w') was about 408 times greater than average Reynolds stress (u',w') in the mid-layer and 270 times greater in the uppcrlayer of the turbulent boundary layer. These values are far greater than presently known maximum value, namely 30 times greater than the average Reynolds stress reported by Gordon (1974) and Heathersaw (1974). The distribution of Reynolds stress were extremely non-normal with the mean peak occurrence period of 5 minutes in the mid-layer and 1. 1 minutes in the upper layer of the turbulent boundary layer. Each teak lasted about 2 seconds in the mid-layer and 1.1 seconds in the upper layer of the turbulent boundary layer. Our dimensionless period of peak occurrence are found to be 33.3 in the mid-layer and 7.3 in the upper-layer, which are substantially larger than the often quoted values of 3.2-6.8 for the bursting period (Jackson, 1976). Some workers have interpreted that the intermittency phenomenon is the retlect of burst across their probe of the currentmeter (Gordon, 1974; Heathersaw, 1974). However, it was known that the burst can be found very near bottom boundary with smoothed bottom (i,e., friction Reynolds number$\leq$3,000) in the laboratory experiments. Through this investigation, it was found that the intermittent strength of the turbulent momentum transports does not conclusively indicate the characteristic feature of the boundary layer turbulence with a rough bottom (i,e., friction Reynolds number$\geq$10$\^$5/).

  • PDF

Organized structure of turbulent boundary layer with rod-roughened wall (표면조도가 난류구조에 미치는 영향)

  • Lee, Jae-Hwa;Lee, Seung-Hyun;Kim, Kyoung-Youn;Sung, Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.189-192
    • /
    • 2008
  • Turbulent coherent structure near rod-roughened wall are investigated by analyzing the database of direct numerical simulation of turbulent boundary layer. The roughness sublayer id defined as two-point correlations are not independent of streamwise locations around roughness. The roughness sublayer based on the two-point spatial correlation is different from that given by one-point statistics. Quadrant analysis and probability-weighted Reynolds shear stress indicate that turbulent structures are not affected by surface roughness above the roughness sublayer defined by the spatial correlations. The conditionally-averaged flow fields associated with Reynolds shear stress producing Q2/Q4 events show that though turbulent vortices are affected in the roughness sublayer, these are very similar at different streamwise locations above the roughness sublayer. The Reynolds stress producing turbulent vortices in the log layer have almost the same geometrical shape as those in the smooth wall-bounded turbulent flows. This suggests that the mechanism by which the Reynolds stress is produced in the log layer has not been significantly affected by the present surface roughness.

  • PDF

Organized Structure of Turbulent Boundary Layer with Rod-roughened Wall (표면조도가 있는 난류경계층 내 난류구조)

  • Lee, Jae-Hwa;Lee, Seung-Hyun;Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.463-470
    • /
    • 2008
  • Turbulent coherent structures near rod-roughened wall are investigated by analyzing the database of direct numerical simulation of turbulent boundary layer. The surface roughness rods with the height $k/{\delta}=0.05$ are arranged periodically in $Re_{\delta}=9000$. The roughness sublayer is defined as two-point correlations are not independent of streamwise locations around roughness. The roughness sublayer based on the two-point spatial correlation is different from that given by one-point statistics. Quadrant analysis and probability-weighted Reynolds shear stress indicate that turbulent structures are not affected by surface roughness above the roughness sublayer defined by the spatial correlations. The conditionally-averaged flow fields associated with Reynolds shear stress producing Q2/Q4 events show that though turbulent vortices are affected in the roughness sublayer, these are very similar at different streamwise locations above the roughness sublayer. The Reynolds stress producing turbulent vortices in the log layer ($y/{\delta}=0.15$)have almost the same geometrical shape as those in the smooth wall-bounded turbulent flows. This suggests that the mechanism by which the Reynolds stress is produced in the log layer has not been significantly affected by the present surface roughness.

Flow Visualization of an Unsteady Airfoil at Low Reynolds Numbers (저 레이놀즈수에서 비정상 에어포일의 흐름 가시화)

  • Kim, Dong-Ha;Chang, Jo-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.51-58
    • /
    • 2006
  • A boundary layer visualization was carried out in order to investigate the influence of Reynolds number on an oscillating airfoil. An NACA 0012 airfoil is sinusoidally pitched at the quarter chord point with oscillation amplitude of ${\pm}6^{\circ}$. A smoke-wire technique was employed to visualize the boundary layer and the near-wake. The freestream velocities are 1.98, 2.83 and 4.03m/s and corresponding chord Reynolds numbers are $2.3{\times}10^4,\;3.3{\times}10^4$, and $4.8{\times}10^4$, respectively. As the reduced frequency of K=0.1 is fixed, the corresponding frequency of an airfoil was adjusted in each case. The results reveal that the point at which the shear stress in an unsteady boundary layer separation disappears does not correspond with the position of the breakdown of the boundary layer, and that the breakdown of the boundary layer occurs further downstream.

  • PDF

Analysis of Stresses Induced in a Polymer Coating Layer due to Temperature Change (온도변화에 대한 고분자 코팅 층에 발생하는 응력 해석)

  • 박명규;이상순;서창민
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.72-76
    • /
    • 2003
  • This paper deals with the stress singularity developed in a polymer layer that is coated to a concrete surface, due to temperature change. The boundary element method is employed to investigate the behavior of interface stresses. The polymeric layer is assumed to be a linear viscoelastic material, and is thermorheologically simple. The order of the singularity is obtained, numerically, for a given viscoelastic model. Numerical results exhibit the relaxation of interface stresses, and large gradients are observed in the vicinity of the free surface. Results show that the stress singularity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model.

Computational modeling of the atmospheric boundary layer using various two-equation turbulence models

  • Juretic, Franjo;Kozmar, Hrvoje
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.687-708
    • /
    • 2014
  • The performance of the $k-{\varepsilon}$ and $k-{\omega}$ two-equation turbulence models was investigated in computational simulations of the neutrally stratified atmospheric boundary layer developing above various terrain types. This was achieved by using a proposed methodology that mimics the experimental setup in the boundary layer wind tunnel and accounts for a decrease in turbulence parameters with height, as observed in the atmosphere. An important feature of this approach is pressure regulation along the computational domain that is additionally supported by the nearly constant turbulent kinetic energy to Reynolds shear stress ratio at all heights. In addition to the mean velocity and turbulent kinetic energy commonly simulated in previous relevant studies, this approach focuses on the appropriate prediction of Reynolds shear stress as well. The computational results agree very well with experimental results. In particular, the difference between the calculated and measured mean velocity, turbulent kinetic energy and Reynolds shear stress profiles is less than ${\pm}10%$ in most parts of the computational domain.

Turbulence Characteristics of a Three-Dimensional Boundary Layer on a Rotating Disk with an Impinging Jet (II) - Turbulence Statistics - (충돌제트를 갖는 회전원판 위 3차원 경계층의 난류특성 (II) - 난류 통계량 -)

  • Kang, Hyung Suk;Yoo, Jung Yul;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1290-1306
    • /
    • 1998
  • An experimental study has been performed on a three-dimensional boundary layer over a rotating disk with an impinging jet at the center of the disk. The objective of the present study is to investigate the turbulence statistics of the three-dimensional turbulent boundary layer, which may be regarded as one of the simplest models for the flow in turbomachinery. Six components of the Reynolds stresses and ten triple products are measured by aligning the miniature X-wire probe to the mean velocity direction. The ratio of the wall-parallel shear stress magnitude to twice the turbulent kinetic energy in the near-wall region is strongly decreased by the impinging jet. In the case of the free rotating disk flow the shear stress vector lags behind the mean velocity gradient vector in the whole boundary layer, while the lag is weakened as the impinging jet speed increases.

Comparison of Two-Equation Model and Reynolds Stress Models with Experimental Data for the Three-Dimensional Turbulent Boundary Layer in a 30 Degree Bend

  • Lee, In-Sub;Ryou, Hong-Sun;Lee, Seong-Hyuk;Chae, Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.93-102
    • /
    • 2000
  • The objective of the present study is to investigate the pressure-strain correlation terms of the Reynolds stress models for the three dimensional turbulent boundary layer in a $30^{\circ}$ bend tunnel. The numerical results obtained by models of Launder, Reece and Rodi (LRR) , Fu and Speziale, Sarkar and Gatski (SSG) for the pressure-strain correlation terms are compared against experimental data and the calculated results from the standard k-${\varepsilon}$ model. The governing equations are discretized by the finite volume method and SIMPLE algorithm is used to calculate the pressure field. The results show that the models of LRR and SSG predict the anisotropy of turbulent structure better than the standard k-${\varepsilon}$ model. Also, the results obtained from the LRR and SSG models are in better agreement with the experimental data than those of the Fu and standard k-${\varepsilon}$ models with regard to turbulent normal stresses. Nevertheless, LRR and SSG models do not effectively predict pressure-strain redistribution terms in the inner layer because the pressure-strain terms are based on the locally homogeneous approximation. Therefore, to give better predictions of the pressure-strain terms, non-local effects should be considered.

  • PDF