Browse > Article
http://dx.doi.org/10.3795/KSME-B.2008.32.6.463

Organized Structure of Turbulent Boundary Layer with Rod-roughened Wall  

Lee, Jae-Hwa (한국과학기술원 기계공학과)
Lee, Seung-Hyun (한국과학기술원 기계공학과)
Kim, Kyoung-Youn (한국에너지기술연구원)
Sung, Hyung-Jin (한국과학기술원 기계공학과)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.32, no.6, 2008 , pp. 463-470 More about this Journal
Abstract
Turbulent coherent structures near rod-roughened wall are investigated by analyzing the database of direct numerical simulation of turbulent boundary layer. The surface roughness rods with the height $k/{\delta}=0.05$ are arranged periodically in $Re_{\delta}=9000$. The roughness sublayer is defined as two-point correlations are not independent of streamwise locations around roughness. The roughness sublayer based on the two-point spatial correlation is different from that given by one-point statistics. Quadrant analysis and probability-weighted Reynolds shear stress indicate that turbulent structures are not affected by surface roughness above the roughness sublayer defined by the spatial correlations. The conditionally-averaged flow fields associated with Reynolds shear stress producing Q2/Q4 events show that though turbulent vortices are affected in the roughness sublayer, these are very similar at different streamwise locations above the roughness sublayer. The Reynolds stress producing turbulent vortices in the log layer ($y/{\delta}=0.15$)have almost the same geometrical shape as those in the smooth wall-bounded turbulent flows. This suggests that the mechanism by which the Reynolds stress is produced in the log layer has not been significantly affected by the present surface roughness.
Keywords
Direct numerical Simulation; Turbulent Boundary Layer; Surface Roughness; Turbulent Structure;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Robinson, S. K., 1991, “Coherent Motions in the Turbulent Boundary Layer,” Annu. Rev. Fluid Mech., Vol. 23, pp. 601-639   DOI   ScienceOn
2 Kim, K., Li, C. .F., Sureshkumar, R., Balachandar, S. & Adrian, R. J., 2007, “Effects of Polymer Stresses on Eddy Structures in Drag-Reduced Turbulent Channel Flow,” J. Fluid Mech., Vol. 584, pp. 281-299   DOI   ScienceOn
3 Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M., 1999, “Mechanism for Generating Coherent Packets of Hairpin Vortices,” J. Fluid Mech. 387, 353-396   DOI   ScienceOn
4 Krogstad, P. .A. & Antonia, R. A., 1994, “Structure of Turbulent Boundary Layers on Smooth and Rough Walls,” J. Fluid Mech., Vol. 277, pp. 1-21   DOI   ScienceOn
5 Vesely, L., Haigermoser, C., Lavecchia, M. & Onorato, M., 2007, “Turbulent Boundary Layers on Rough Walls: PIV Studies,” In Proc 2007 7th International Symposium Particle Image Velocimetry, Sep.11-14, Roma
6 Tachie, M. F., Bergstrom, D. J. & Balachandar, R., 2000, “Rough Wall Turbulent Boundary Layers in Shallow Open Channel Flow,” J. Fluids Eng, Vol. 122, pp. 533-541   DOI   ScienceOn
7 Lee, S. .H. & Sung, H. J., 2007, “Direct Numerical Simulation of Turbulent Boundary Layer Over a Rod-Roughened Wall,” J. Fluid Mech., Vol. 584, pp. 125-146   DOI   ScienceOn
8 Bhaganagar, Kiran., Coleman, Gary. & Kim, John., 2004, “Effect of Roughness on Wall-Bounded Turbulence,” Flow, Turbul. Combust, Vol. 72, pp. 463-492   DOI
9 Kim, K., Baek, S. .J. & Sung, H. J., 2002, “an Implicit Velocity Decoupling Procedure for The Incompressible Navier-Stokes Equations,” Int. J. Numer. Meth. Fl., Vol. 38, pp. 125-138   DOI   ScienceOn
10 Lund, T. S., Wu, X. & Squires, K. D., 1998, “Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulation,” J. Comput. Phys., Vol. 140, pp. 233-258   DOI   ScienceOn
11 Adrian, R. J., Jones, B. G., Chung, M. K., Hasson, Yassin., Nithianandan, C. K. and Tung, A. T. .C., 1989, “Approximation of Turbulent Conditional Averages by Stochastic Estimation,” Phys. Fluids, Vol. 1, pp. 992-998   DOI
12 Mazouz, A., Labraga, L. & Tournier, C., 1998, “Anisotropic Invariants of Reynolds Stress Tensor in A Duct Flow and Turbulent Boundary Layer,” J. Fluids Eng, Vol. 120, pp. 280-284   DOI   ScienceOn
13 Bhaganagar, Kiran., Coleman, Gary. & Kim, John., 2007, “Effect of Roughness on Pressure Fluctuations in a Turbulent Channel Flow,” Phys. Fluids, Vol. 19, 028103   DOI   ScienceOn
14 Kim, J., Kim, D. & Choi, H., 2001, “an Immersed Boundary Finite-Volume Method of Simulations of Flow In Complex Geometries,” J. Comput. Phys., Vol. 171, pp. 132-150   DOI   ScienceOn
15 Chakraborty, P., Balachandar, S. & Adrian, R. J., 2005, “on The Relationships Between Local Vortex Identification Schemes,” J. Fluid Mech., Vol. 535, pp. 189-214   DOI   ScienceOn
16 Townsend, A. A., 1976, “The Structure of Turbulent Shear Flow,” Cambridge University Press
17 Bakken, O. M., Krogstad, P. .A., Ashrafian, A. & Andersson, I., 2005, “Reynolds Number Effects in the Outer Layer of The Turbulent Flow in a Channel With Rough Walls,” Phys. Fluids, Vol. 17, 065101   DOI   ScienceOn
18 Ashrafian, A., Andersson, H. I. & Manhart, M., 2004, “DNS of Turbulent Flow in a Rod-Roughened Channel,” Intl. J. Heat Fluid Flow., Vol. 25, pp. 373-383   DOI   ScienceOn
19 Adrian, R. J., “Stochastic Estimation of the Structure of Turbulent Files. in Eddy Structure Identification (Ed. J. P. Bonnet),” Springer, pp. 145-196
20 Raupach, M. R., Antonia, R. A. & Bajagopalan, S., 1991, “Rough-Wall Turbulent Boundary Layers,” Appl. Mech. Rev., Vol. 44, pp. 1-25   DOI
21 Krogstad, P. .A., Antonia, R. A. & Browne, L. W. B., 1992, “Comparison Between Rough- and Smooth-Wall Turbulent Boundary Layers,” J. Fluid Mech., Vol. 245, pp. 599-617   DOI
22 Perry, A. E., Lim, K. L. & Henbest, S. M., 1987, “an Experimental Study of The Turbulence Structure in Smooth- and Rough-Wall Boundary Layers,” J. Fluid Mech., Vol. 177, pp. 437-466   DOI   ScienceOn
23 Flack, K. A., Schultz, M. P. & Shapiro, T. A., 2005, “Experimental Support for Townsend's Reynolds Number Similarity,” Phys. Fluids, Vol. 17, 035102   DOI   ScienceOn
24 Schultz, M. P. & Flack, K. A., 2007, “The Rough-Wall Turbulent Boundary Layer from The Hydraulically Smooth to the Fully Rough Regime,” J. Fluid Mech., Vol. 580, pp. 381-405   DOI   ScienceOn
25 Krogstad, P. .A. & Antonia, R. A., 1999, “Surface Roughness Effects in Turbulent Boundary Layers,” Exp. Fluids, Vol. 27, pp. 450-460   DOI