Browse > Article
http://dx.doi.org/10.12989/was.2014.19.6.687

Computational modeling of the atmospheric boundary layer using various two-equation turbulence models  

Juretic, Franjo (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb)
Kozmar, Hrvoje (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb)
Publication Information
Wind and Structures / v.19, no.6, 2014 , pp. 687-708 More about this Journal
Abstract
The performance of the $k-{\varepsilon}$ and $k-{\omega}$ two-equation turbulence models was investigated in computational simulations of the neutrally stratified atmospheric boundary layer developing above various terrain types. This was achieved by using a proposed methodology that mimics the experimental setup in the boundary layer wind tunnel and accounts for a decrease in turbulence parameters with height, as observed in the atmosphere. An important feature of this approach is pressure regulation along the computational domain that is additionally supported by the nearly constant turbulent kinetic energy to Reynolds shear stress ratio at all heights. In addition to the mean velocity and turbulent kinetic energy commonly simulated in previous relevant studies, this approach focuses on the appropriate prediction of Reynolds shear stress as well. The computational results agree very well with experimental results. In particular, the difference between the calculated and measured mean velocity, turbulent kinetic energy and Reynolds shear stress profiles is less than ${\pm}10%$ in most parts of the computational domain.
Keywords
neutrally stratified atmospheric boundary layer; atmospheric turbulence; computational modeling; steady Reynolds-Averaged-Navier-Stokes (RANS) equations; two-equation turbulence models; computational wind tunnel;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Counihan, J. (1969a), "A method of simulating a neutral atmospheric boundary layer in a wind tunnel", AGARD Conference Proceedings 43.
2 Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007a), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmos. Environ., 41(2), 238-252.   DOI   ScienceOn
3 Blocken, B., Carmeliet, J. and Stathopoulos, T. (2007b), "CFD evaluation of wind speed conditions in passages between parallel buildings - effect of wall-function roughness modifications for the atmospheric boundary layer flow", J. Wind Eng. Ind. Aerod., 95(9-11), 941-962.   DOI   ScienceOn
4 Boussinesq, J. (1877), "Essai sur la theorie des eaux courantes", Memoires presentes par divers savants al'Academie des Sciences XXIII, 1-680.
5 Counihan, J. (1969b), "An improved method of simulating an atmospheric boundary layer in a wind tunnel", Atmos. Environ., 3, 197-214.   DOI   ScienceOn
6 Counihan, J. (1973), "Simulation of an adiabatic urban boundary layer in a wind tunnel", Atmos. Environ., 7(7), 673-689.   DOI   ScienceOn
7 Duynkerke, P.G. (1988), "Application of the E-epsilon turbulence closure-model to the neutral and stable atmospheric Boundary Layer", J. Atmos. Sci., 45(5), 865-880.   DOI
8 Gorle, C., van Beeck, J., Rambaud, P. and Van Tendeloo, G. (2009), "CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer", Atmos. Environ., 43(3), 673-68.   DOI   ScienceOn
9 ESDU 74031 (1974), "Characteristics of atmospheric turbulence near the ground. Part II: single point data for strong winds (neutral atmosphere)", Engineering Sciences Data Unit 74031.
10 Franke, J., Hellsten, A., Schlunzen, H. and Carissimo, B.E. (2007), "Best practice guideline for the CFD simulation of flows in the urban environment", Cost action 732: quality assurance and improvement of microscale meteorological models.
11 Garratt, J.R. (1992), The atmospheric boundary layer, Cambridge University Press, New York, NY, USA.
12 Hargreaves, D.M. and Wright, N.G. (2007), "On the use of the k-${\varepsilon}$ model in commercial CFD software to model the neutral atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 95(5), 355-369.   DOI   ScienceOn
13 Hu, P., Li, Y.L., Cai, C.S., Liao, H.L. and Xu, G.J. (2013), "Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-omega turbulence model", Wind Struct., 17(1), 87-105.   과학기술학회마을   DOI
14 Jasak, H. (1996), Error analysis and estimation in the finite volume method with application to fluid flows, Ph.D. Thesis, Imperial College, University of London, London, UK.
15 Jasak, H., Weller, H. and Gosman, A. (1999), "High resolution NVD differencing scheme for arbitrarily unstructured meshes", Int. J. Numer. Meth. Fl., 31, 431-449.   DOI   ScienceOn
16 Jones, W.P. and Launder B.E. (1972), "The prediction of laminarization with a two-equation model of turbulence", Int. J. Heat Mass Trans., 15(2), 301-314.   DOI   ScienceOn
17 Juretic, F. (2004), Error analysis in finite volume CFD, Ph.D. Thesis, Imperial College, University of London, London, UK.
18 Juretic, F. and Kozmar, H. (2013), "Computational modeling of the neutrally stratified atmospheric boundary layer flow using the standard k-${\varepsilon}$ turbulence model", J. Wind Eng. Ind. Aerod., 115, 112-120.   DOI
19 Kozmar, H. (2011c), "Wind-tunnel simulations of the suburban ABL and comparison with international standards", Wind Struct., 14(1), 15-34.   DOI
20 Kozmar, H. (2008), "Influence of spacing between buildings on wind characteristics above rural and suburban areas", Wind Struct., 11(5), 413-426.   DOI
21 Kozmar, H. (2010), "Scale effects in wind tunnel modeling of an urban atmospheric boundary layer", Theor. Appl. Climatol., 100(1-2), 153-162.   DOI
22 Kozmar, H. (2011a), "Truncated vortex generators for part-depth wind-tunnel simulations of the atmospheric boundary layer flow", J. Wind Eng. Ind. Aerod., 99(2-3), 130-136.   DOI
23 Kozmar, H. (2011b) "Characteristics of natural wind simulations in the TUM boundary layer wind tunnel", Theor. Appl. Climatol., 106(1-2), 95-104.   DOI
24 Kozmar, H. (2012a), "Improved experimental simulation of wind characteristics around tall buildings", J. Aerospace Eng., 25(4), 670-679.   DOI
25 Kozmar, H. (2012b), "Physical modeling of complex airflows developing above rural terrains", Environ. Fluid Mech., 12(3), 209-225.   DOI
26 O'Sullivan, J.P., Archer, R.A. and Flay, R.G.J. (2011), "Consistent boundary conditions for flows within the atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 99(1), 65-77.   DOI   ScienceOn
27 Parente, A., Gorle, C., van Beeck, J. and Benocci, C. (2011a), "Improved k-${\varepsilon}$ model and wall function formulation for the RANS simulation of ABL flows", J. Wind Eng. Ind. Aerod., 99(4), 267-278.   DOI   ScienceOn
28 Pope, S.B. (2000), Turbulent Flows, Cambridge University Press, Cambridge, UK.
29 Parente, A., Gorle, C., van Beeck, J. and Benocci, C. (2011b), "A comprehensive modelling approach for the neutral atmospheric boundary layer: Consistent inflow conditions, wall function and turbulence model", Bound. - Lay. Meteorol., 140, 411-428.   DOI
30 Patankar, S.V. and Spalding, D.B. (1972), "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows", Int. J. Heat Mass Trans., 15(10), 1787-1806.   DOI   ScienceOn
31 Richards, P.J. and Hoxey, R.P. (1993), "Appropriate boundary conditions for computational wind engineering models using the k-${\varepsilon}$ turbulence model", J. Wind Eng. Ind. Aerod., 46-47, 145-153.   DOI   ScienceOn
32 Yakhot, V. and Orszag, S.A. (1986), "Renormalization group analysis of turbulence, 1. Basic Theory", J. Sci. Comput., 1, 3-51.   DOI   ScienceOn
33 Riddle, A., Carruthers, D., Sharpe, A., McHugh, C. and Stocker, J. (2004), "Comparisons between FLUENT and ADMS for atmospheric dispersion modeling", Atmos. Environ., 38(7), 1029-1038.   DOI   ScienceOn
34 Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J. (1995), "A new k-${\epsilon}$ eddy viscosity model for high Reynolds number turbulent flows", Comput. Fluids, 24(3), 227-238.   DOI   ScienceOn
35 Wilcox, D.C. (1988), "Reassessment of the scale-determining equation for advanced turbulence models", AIAA J., 26(11), 1299-1310.   DOI   ScienceOn
36 Yang, Y., Gu, M., Chen, S. and Jin, X. (2009), "New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering", J. Wind Eng. Ind. Aerod., 97(2), 88-95.   DOI   ScienceOn
37 Revuz, J., Hargreaves, D.M. and Owen J.S. (2012), "On the domain size for the steady-state CFD modelling of a tall building", Wind Struct., 15(4), 313-329.   DOI   ScienceOn
38 Zhang, J., Yang, Q.S. and Li, Q.S. (2013), "Developments and applications of a modified wall function for boundary layer flow simulations", Wind Struct., 17(4), 361-377.   과학기술학회마을   DOI
39 Holmes, J.D. (2007), Wind loading of structures, 2nd Ed., Taylor & Francis, London, UK.