• Title/Summary/Keyword: boundary value analysis

Search Result 514, Processing Time 0.025 seconds

A boundary radial point interpolation method (BRPIM) for 2-D structural analyses

  • Gu, Y.T.;Liu, G.R.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.535-550
    • /
    • 2003
  • In this paper, a boundary-type meshfree method, the boundary radial point interpolation method (BRPIM), is presented for solving boundary value problems of two-dimensional solid mechanics. In the BRPIM, the boundary of a problem domain is represented by a set of properly scattered nodes. A technique is proposed to construct shape functions using radial functions as basis functions. The shape functions so formulated are proven to possess both delta function property and partitions of unity property. Boundary conditions can be easily implemented as in the conventional Boundary Element Method (BEM). The Boundary Integral Equation (BIE) for 2-D elastostatics is discretized using the radial basis point interpolation. Some important parameters on the performance of the BRPIM are investigated thoroughly. Validity and efficiency of the present BRPIM are demonstrated through a number of numerical examples.

Analysis of Spiral Bevel Gear by Inverse Problem (역문제에 의한 스파이얼 베벨기어의 해석)

  • 박성완
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.85-95
    • /
    • 2001
  • This study proposed a technique for inverse problem, linear approximation of contact position and loading in single and double meshing of spiral bevel gear , using 2-dimension model considered near the tooth by root stress. Determine root stress is carried out far the gear tooth by finite element method and boundary element method. Boundary element discretization near contact point is carefully performed to keep high computational accuracy. And from those estimated results, the comparing estimate value with boundary element method value was discussed.

  • PDF

A Study on Digital Drawing and Boundary Extraction Using Targets in Aerial Photogrammetry (항공사진측량용 타겟을 이용한 수치도화 및 지적경계 추출에 관한 연구)

  • Yun, Bu-Yeol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.969-977
    • /
    • 2022
  • Currently, in Korea, aerial photogrammetry is being studied for cadastral boundaries and numerical maps. Since the announced value of cadastral survey is closely related to ownership, the accuracy and reliability of the published value should be emphasized above all else. However, although aerial photogrammetry has great advantages in economic feasibility and surveying efficiency, it has many limitations when extracting the boundary of cadastral survey based on the acquired image. In order to improve these limitations, in this study, an aerial target was applied to obtain reliability improvement. Therefore, in order to examine the usefulness of aerial photogrammetry for cadastral survey application, cadastral boundary extraction and accuracy comparison analysis were conducted.

Multiple Unbounded Positive Solutions for the Boundary Value Problems of the Singular Fractional Differential Equations

  • Liu, Yuji;Shi, Haiping;Liu, Xingyuan
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.2
    • /
    • pp.257-271
    • /
    • 2013
  • In this article, we establish the existence of at least three unbounded positive solutions to a boundary-value problem of the nonlinear singular fractional differential equation. Our analysis relies on the well known fixed point theorems in the cones.

A Study on the Boundary Element Method for Numerical Analysis of Nonlinear Free Surface Waves(I) (비선형 자유표면파의 수치해석을 위한 경계요소법에 대한 연구 (I))

  • Sung, Hong G.;Hong, Sa Y.;Choi, Hang S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.53-60
    • /
    • 1997
  • Nonlinear free surface flow phenomena have teen studied by several kinds of numerical methods, of which boundary element method has been known as most promising one. There, however, remain many difficulties to be solved in the numerical procedures by boundary element analysis. In this paper, an efficient calculation of elemental integrals and iterative solution algorithm for the resulting system of equations were thoroughly investigated in order to enhance the procedure of the boundary element analysis. Advantages of the herein developed boundary element analysis code are demonstrated in terms of accuracy and convergence for typical boundary-value problems with free surface.

  • PDF

A study on failure probability characteristic based on the reliability analysis according to the variation of boundary conditions (신뢰성 기반 쉴드터널의 경계조건 변화에 따른 파괴확률 특성에 관한 연구)

  • Gyu-Phil Lee;Young-Bin Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.447-458
    • /
    • 2023
  • In this study, a comparison model considering the stochastic characteristics of the load and member resistance of the shield tunnel segment lining as well as the variability of the boundary condition was selected and reliability analysis was performed, and the adequacy of the limit state design was analyzed by calculating the probability of failure and reviewing the structural safety. For the analysis considering the probability characteristics of these ground constants, the ground spring coefficient was considered as the mean value by calculating the quantitative value by applying the Muirwood formula, and the coefficient of variation was selected based on the existing research data to review the models according to the change of ground boundary conditions. Through the structural analysis of these models and the reliability analysis using MCS technique, the failure probability and reliability index were calculated to examine the changes in the failure probability due to changes in ground boundary conditions.

Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis

  • Arefi, Mohammad;Zur, Krzysztof Kamil
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.615-623
    • /
    • 2020
  • In this paper, free vibration analysis of a functionally graded cylindrical nanoshell resting on Pasternak foundation is presented based on the nonlocal elasticity theory. A two-dimensional formulation along the axial and radial directions is presented based on the first-order shear deformation shell theory. Hamilton's principle is employed for derivation of the governing equations of motion. The solution to formulated boundary value problem is obtained based on a harmonic solution and trigonometric functions for various boundary conditions. The numerical results show influence of significant parameters such as small scale parameter, stiffness of Pasternak foundation, mode number, various boundary conditions, and selected dimensionless geometric parameters on natural frequencies of nanoshell.

Adaptive Background Modeling Considering Stationary Object and Object Detection Technique based on Multiple Gaussian Distribution

  • Jeong, Jongmyeon;Choi, Jiyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.51-57
    • /
    • 2018
  • In this paper, we studied about the extraction of the parameter and implementation of speechreading system to recognize the Korean 8 vowel. Face features are detected by amplifying, reducing the image value and making a comparison between the image value which is represented for various value in various color space. The eyes position, the nose position, the inner boundary of lip, the outer boundary of upper lip and the outer line of the tooth is found to the feature and using the analysis the area of inner lip, the hight and width of inner lip, the outer line length of the tooth rate about a inner mouth area and the distance between the nose and outer boundary of upper lip are used for the parameter. 2400 data are gathered and analyzed. Based on this analysis, the neural net is constructed and the recognition experiments are performed. In the experiment, 5 normal persons were sampled. The observational error between samples was corrected using normalization method. The experiment show very encouraging result about the usefulness of the parameter.

An Optimization Model Based on Combining Possibility of Boundaries for Districting Problems (경계 결합 가능성 기반 구역설정 최적화 모델)

  • Kim, Kamyoung
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.3
    • /
    • pp.423-437
    • /
    • 2014
  • Districting is a spatial decision making process to make a new regional framework for affecting human activities. Natural barriers such as rivers and mountains located within a reorganized district may reduce the efficiency of reorganized human activities. This implies that it is necessary to consider boundary characteristics in a districting process. The purpose of this research is to develop a new spatial optimization model based on boundary characteristics for districting problems. The boundary characteristics are evaluated as continuous value expressing the possibility of combining adjacent two basic spatial units rather than a dichotomous value with 1 or 0 and are defined as an objective function in the model. In addition, the model has explicitly formulated contiguity constraints as well as constraints enforcing demand balance among districts such as population and area. The boundary attributes are categorized into physical and relational characteristics. Suitability analysis is used to combine various variables related to each boundary characteristic and to evaluate the coupling possibility between two neighboring basic units. The model is applied to an administrative redistricting problem. The analytical results demonstrate that various boundary characteristics could be modeled in terms of mixed integer programming (MIP).

  • PDF

Analysis of Orthotropic Spherical Shells under Symmetric Load Using Runge-Kutta Method (Runge-Kutta법을 이용한 축대칭 하중을 받는 직교 이방성 구형쉘의 해석)

  • Kim, Woo-Sik;Kwun, Ik-No;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.115-122
    • /
    • 2002
  • It is often hard to obtain analytical solutions of boundary value problems of shells. Introducing some approximations into the governing equations may allow us to get analytical solutions of boundary value problems. Instead of an analytical procedure, we can apply a numerical method to the governing equations. Since the governing equations of shells of revolution under symmetric load are expressed by ordinary differential equations, a numerical solution of ordinary differential equations is applicable to solve the equations. In this paper, the governing equations of orthotropic spherical shells under symmetric load are derived from the classical theory based on differential geometry, and the analysis is numerically carried out by computer program of Runge-Kutta methods. The numerical results are compared to the solutions of a commercial analysis program, SAP2000, and show good agreement.

  • PDF