• 제목/요약/키워드: boundary rainfall

검색결과 94건 처리시간 0.021초

2009년 발생한 제천시의 토석류 피해분석에 관한 연구 (A Study on Analysis of Damages due to Debris Flow at Jecheon in 2009)

  • 유남재;최영준;이철주
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.95-101
    • /
    • 2010
  • This paper is results of case study on characteristics of debris flow occurred at Jecheon during a heavy rainfall in 2009. The site studied is the mountain area located at Palsong-ri Bongyang-op in Jecheon-si where serious damages due to debris flow were occurred by heavy rainfall during July 7 to July 16 in 2009. Intensity and duration of rainfall causing debris flow were analyzed on the basis of AWS data. Characteristics of debris flow such as initiation, transportation and deposition were investigated through field reconnaissance. The geological and topographical characteristics of slope where debris flow was triggered were figured out and characteristics of erosion on the bottom and sides of valley during transportation of debris flow were also investigated. The slope and boundary of valley where the debris flow started to be deposited were studied.

  • PDF

2006년 원주지역 산사태 발생특성 (Characteristics of Landslide Occurrence in Wonju during 2006)

  • 유남재;김종환;최준식
    • 산업기술연구
    • /
    • 제31권A호
    • /
    • pp.87-94
    • /
    • 2011
  • This paper is results of analyzing characteristics of landslides occurred in Wonju, Gangwondo, around July, 16 in 2006, caused by heavy rainfall and antecedent precipitation by two typhoons of Ewiniar and Bilis. The main causes of landslides were antecedent precipitation during July 8 to 15, resulting in weakening grounds by increasing the degree of saturation previously, and the heavy rainfall during July 15 to 16. Most of landslides in natural slopes were transitional failures occurred along the boundary between the residual weathered soil in shallow depth and the hard mother rock. From results of conclusive analyses regarding 28 sites in Wonju region where landslides occurred, the slope length of landslide, the slope width, and the slope area were less than 50m with 71% of frequency, 20m with 79% of frequency and $300m^2$ of 64% of frequency respectively. The average value of slope angle was $35^{\circ}$. The most probable direction of slope was found to be north because of topography and advancing direction of seasonal rain front.

  • PDF

함수특성곡선을 고려한 불포화토 사면의 안정성 연구 (A study on the Stability Analysis of Slope in Unsaturated Soil Based on the Soil-Water characteristic curve)

  • 윤민기;김종성;김효중;이영생
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1029-1037
    • /
    • 2008
  • The finite element analysis of transient water flow through unsaturated soils was used to investigate effects of hydraulic characteristics, initial relative degree of saturation, methods to consider boundary condition, and rainfall intensity and duration on water pressure in slopes. The finite element method with shear strength reduction technique was used to evaluate the stability of slopes under rainfall. The slope-related disasters in Korea usually occur between July and September during the typhoon and localized heavy rain. This means that the rainfall is the most important factor that leads to the slope-related disasters. The slope-related disasters can happen at very short time and lead to big damage. To forecast the change of the heave of the groundwater in slope the Seep/w program was used.

  • PDF

도심지 토사재해 고위험지역 극치강우 시간분포 시나리오 분석 (Analysis of Extreme Rainfall Distribution Scenarios over the Landslide High Risk Zones in Urban Areas)

  • 윤선권;장상민;이진영
    • 한국농공학회논문집
    • /
    • 제58권3호
    • /
    • pp.57-69
    • /
    • 2016
  • In this study, we analyzed the extreme rainfall distribution scenarios based on probable rainfall calculation and applying various time distribution models over the landslide high risk zones in urban areas. We used observed rainfall data form total 71 ASOS (Automated Synoptic Observing System) station and AWS (Automatic Weather Station) in KMA (Korea Meteorological Administration), and we analyzed the linear trends for 1-hr and 24-hr annual maximum rainfall series using simple linear regression method, which are identified their increasing trends with slopes of 0.035 and 0.660 during 1961-2014, respectively. The Gumbel distribution was applied to obtain the return period and probability precipitation for each duration. The IDF (Intensity-Duration-Frequency) curves for landslide high risk zones were derived by applying integrated probability precipitation intensity equation. Results from IDF analysis indicate that the probability precipitation varies from 31.4~38.3 % for 1 hr duration, and 33.0~47.9 % for 24 hr duration. It also showed different results for each area. The $Huff-4^{th}$ Quartile method as well as Mononobe distribution were selected as the rainfall distribution scenarios of landslide high risk zones. The results of this study can be used to provide boundary conditions for slope collapse analysis, to analyze sediment disaster risk, and to use as input data for risk prediction of debris flow.

Time Slice 실험으로 모의한 동아시아 여름몬순의 변화 (Possible Changes of East Asian Summer Monsoon by Time Slice Experiment)

  • 문자연;김문현;최다희;부경온;권원태
    • 대기
    • /
    • 제18권1호
    • /
    • pp.55-70
    • /
    • 2008
  • The global time slice approach is a transient experiment using high resolution atmosphere-only model with boundary condition from the low resolution globally coupled ocean-atmosphere model. The present study employs this "time slice concept" using ECHAM4 atmosphere-only model at a horizontal resolution of T106 with the lower boundary forcing obtained from a lower-resolution (T42) greenhouse gas + aerosol forcing experiment performed using the ECHO-G/S (ECHAM4/HOPE-G) coupled model. In order to assess the impact of horizontal resolution on simulated East Asian summer monsoon climate, the differences in climate response between the time slice experiments of the present and that of IPCC SRES AR4 participating 21 models including coarser (T30) coupled model are compared. The higher resolution model from time slice experiment in the present climate show successful performance in simulating the northward migration and the location of the maximum rainfall during the rainy season over East Asia, although its rainfall amount was somewhat weak compared to the observation. Based on the present climate simulation, the possible change of East Asian summer monsoon rainfall in the future climate by the IPCC SRES A1B scenario, tends to be increased especially over the eastern part of Japan during July and September. The increase of the precipitation over this region seems to be related with the weakening of northwestern part of North Pacific High and the formation of anticyclonic flow over the south of Yangtze River in the future climate.

Simulation of Indian Summer Monsoon Rainfall and Circulations with Regional Climate Model

  • Singh, G.P.;Oh, Jai-Ho
    • 한국제4기학회:학술대회논문집
    • /
    • 한국제4기학회 2004년도 하계학술대회
    • /
    • pp.24-25
    • /
    • 2004
  • It is well known that there is an inverse relationship between the strength of Indian summer monsoon Rainfall (ISMR) and extent of Eurasian snow cover/depth in the preceding season. Tibetan snow cover/depth also affects the Asian monsoon rainy season largely. The positive correlation between Tibetan sensible heat flux and southeast Asian rainfall suggest an inverse relationship between Tibetan snow cover and southeast Asian rainfall. Developments in Regional Climate Models suggest that the effect of Tibetan snow on the ISMR can be well studied by Limited Area Models (LAMs). LAMs are used for regional climate studies and operational weather forecast of several hours to 3 days in future. The Eta model developed by the National Center for Environmental Prediction (NCEP), the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and Regional Climate Model (RegCM) have been used for weather prediction as well as for the study of present-day climate and variability over different parts of the world. Regional Climate Model (RegCM3) has been widely . used for various mesoscale studies. However, it has not been tested to study the characteristics of circulation features and associated rainfall over India so far. In the present study, Regional Climate Model (RegCM-3) has been integrated from 1 st April to 30th September for the years 1993-1996 and monthly mean monsoon circulation features and rainfall simulated by the model at 55km resolution have been studied for the Indian summer monsoon season. Characteristics of wind at 850hPa and 200hPa, temperature at 500hPa, surface pressure and rainfall simulated by the model have been examined for two convective schemes such as Kuo and Grell with Arakawa-Schubert as the closure scheme, Model simulated monsoon circulation features have been compared with those of NCEP/NCAR reanalyzed fields and the rainfall with those of India Meteorological Department (IMD) observational rainfall datasets, Comparisons of wind and temperature fields show that Grell scheme is closer to the NCEP/NCAR reanalysis, The influence of Tibetan snowdepth in spring season on the summer monsoon circulation features and subsequent rainfall over India have been examined. For such sensitivity experiment, NIMBUS-7 SMMR snowdepth data have been used as a boundary condition in the RegCM3, Model simulation indicates that ISMR is reduced by 30% when 10cm of snow has been introduced over Tibetan region in the month of previous April. The existence of Tibetan snow in RegCM3 also indicates weak lower level monsoon westerlies and upper level easterlies.

  • PDF

강우에 따른 거제만해역 육상오염원의 영향평가 (Evaluation of the Influence of Inland Pollution Sources on Shellfish Growing Areas after Rainfall Events in Geoje Bay, Korea)

  • 하광수;유현덕;심길보;김지회;이태식;김풍호;주자연;이희정
    • 한국수산과학회지
    • /
    • 제44권6호
    • /
    • pp.612-621
    • /
    • 2011
  • The influences of inland pollution sources because of rainfall events on the bacteriological water quality in Geoje Bay, a major shellfish production area in Korea, were investigated. The sanitary status of sea water and shellfish after rainfall events was also evaluated. The flow rates of 13 streams around Geoje Bay showed 6 to 7-fold increases after 15 to 21 mm of rainfall. Peak pollution was observed in the Naegan Stream, the Gandeok Stream and the Seojeong Stream. The calculated impact area of inland pollution sources was 3.1 $km^2$ immediately after 15 mm of rainfall and expanded to 3.5 $km^2$ after 24 hours. These calculations of impacted area matched results from fecal coliform analyses with sea water. The distance between the major pollution source in the bay (the Gandeok Stream) and the station with the worst bacteriological water quality immediately after 15 mm of rainfall, which was below the Korean standard, was 0.8 km in a straight line; this distance increased to 2.0 km after a period of 24 hours. The area impacted by inland pollution sources after a 15 mm rainfall event was wider than after a 21 mm rainfall. Although the flow rate from inland pollution sources was higher, the concentration of fecal coliform in the discharged water was lower after higher rainfall events. These observations corresponded with the results of fecal coliform analyses with sea water samples. According to the evaluation of the influences of inland pollution sources and fecal coliform analyses on sea water and shellfish samples in Geoje Bay, pollutants from inland sources did not reach the boundary line of the shellfish growing area after rainfall events of 15 or 22 mm. The bacteriological water quality of the shellfish growing area in Geoje Bay met the Korean standard and US NSSP requirements for approved shellfish growing areas.

2006년 집중호우에 의한 홍천지역의 산사태 발생 사례 연구 (A Case Study on Occurrence of Landslide by Heavy Rainfall in Hongcheon Area in 2006)

  • 김호진;임오빈;유남재
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.877-882
    • /
    • 2010
  • This paper is a result of investigating causes and main characteristics of landslides, occurred at Hongcheon area in Gangwondo during July in 2006, by collecting relevant data and visiting site. The main cause of landslides in this area has been found to be saturation of the ground wetted by a series of precipitations during 10~13 July and the heavy rainfall during 15 July. The pattern of the landslides could be classified as translational failure, occurred at the boundary between the relatively thin weathered residual soil and the mother rock. By analyzing a number of failed slopes based on site visit and reviewing collected data, typical widths of failed slopes are in the range of 10~20m (minimum: 5m, maximum: 70m). Lengths of landslide area are in the wide range of 10~450m. Most of area are less than 20m in width and 100m in length so that their shapes are long and narrow, frequently observed in Korea, and their areas are relatively small size of around $1000m^2$. The inclinations of the failed slopes are in the range of $10{\sim}60^{\circ}$ while the most probable slope angle is about $20{\sim}25^{\circ}$.

  • PDF

2006년 횡성지역 산사태 발생특성 (Landslide characteristics for Hoengseong area in 2006)

  • 유남재;최준식
    • 토지주택연구
    • /
    • 제2권2호
    • /
    • pp.157-162
    • /
    • 2011
  • 본 논문은 강원도 횡성지역에서 집중호우와 태풍 에위니아, 빌리스의 선행강우에 의해 2006년 7월 16일에 발생한 산사태 피해 발생 원인과 특성에 대하여 분석한 결과이다. 산사태 발생의 직접적인 원인은 7월 12일~13일의 선행강우로 지반의 포화도가 증가된 상태에서 7월 15일~16일의 집중호우로 인해 피해가 발생한 것으로 확인되었다. 자연 사면의 산사태 유형은 얕은 심도의 풍화잔류토층과 기반암의 경계면에서 활동이 진행되는 전이형 사면활동으로 확인되었다. 횡성지역에서 발생한 100개소에 대한 자료의 종합적인 분석 결과, 산사태 발생의 사면길이는 100m이하(87%), 사면 폭은 30m이하(74%), 평균사면경사는 $24^{\circ}$로 나타났다.

열대 및 아열대 SST에 관련된 동아시아 강우량의 경년 변동성 (Interannual variabilities of the East Asia precipitation associated with tropical and subtropical sea surface temperature)

  • 하경자
    • 한국환경과학회지
    • /
    • 제4권5호
    • /
    • pp.28-28
    • /
    • 1995
  • The aim of the present study is to investigate the interannual variabilities of the East Asia monsoon rainfall associated with the global sea surface temperature anomaly(SSTA). For this study, the summer rainfall(from June to August) over the twenty-eight period of 1961-1988 were analyzed with being divided by nine-subregions over East Asia including Korea, China and Japan. From the analysis of the principal modes explaining the interannual variation, the interannual variabilities of summer rainfalls in South Japan and Korea are larger than those of the other subregions of the East Asia. There is a strong negative correlation between the summer rainfalls of south China and Korea. In this study, the relationship between the summer monsoon of each subregion and SSTs of the tropical NINO regions, of western Pacific warm pool, and of the subtropical ocean were investigated. The longitudinal sections of the lagged cross correlations of the summer rainfal1 anomaly in (a) Korea and (b) south China, and the monthly SSTA in the equatorial(averaged from 65 to 6N) Pacific were analyzed. The negative maximum correlation pattems of Korea''s stammer rainfal1 and SSTs over the eastern Pacific is transfered to positive maximum conrlation over central Pacific region with a biennial periodicity. In South China, the significant positive correlations are found at -12 month lag over the eastern Pacific and maximum negative correlation at 16 month lag over the central Pacific with the quasi-biennial oscillation. But the correlation coefficient reverses completely to that in Korea. In order to investigate the most prevailing interannual variability of rainfall related to the favored SSTA region, the lagged cross correlations between East Asia rainfall and SSTs over the moO regions(NINO 1+2(0-105, 90W-80W), NINO 3(5N-5S, 150W-90W), NINO 4(5N-5S, 160E-l50W) and the western Pacific worm pool (5N-5S, 120E-l60E) were analyzed. Among the lagged cross-correlation cycles in NINO regions, the maximum correlations for the negative lagged months prevail in NINO 1+2 and NINO 3, and the cross correlations for the positive lagged months NINO 4. It is noteworthy that correlation between the western Pacific warm pool SSTA and the monsoon rainfall in Korea and South China have the maximum value at negative 4 month lag. The evolution of the correlation between the East Asia monsoon rainfall and SSTA is linked to the equatorial convective cluster and related to northward propagating situation, and raising the possibility that the East Asia monsoon precipitation may be more fundamentally related to the interaction of intraseasonal oscillations and the sub-regional characteristics including the surface boundary conditions and the behavior of climatological air mass.