• Title/Summary/Keyword: boundary method

Search Result 7,444, Processing Time 0.036 seconds

Free Vibration Analysis of Arbitrarily Shaped Plates with Free Edges Using Non-dimensional Dynamic Influence Functions (무차원 동영향 함수를 이용한 자유단 경계를 가진 임의 형상 평판의 자유진동해석)

  • 강상욱;김일순;이장무
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.821-827
    • /
    • 2003
  • The so-called boundary node method (or NDIF method) that was developed by the authors has been extended for free vibration analysis of arbitrarily shaped plates with free edges. Since the proposed method requires no interpolation functions. no integration Procedure is needed on boundary edges of the plates and only a small amount of numerical calculation is involved, compared with FEM and BEM. In order to explain tile reason why spurious eigenvalues are generated when the NDIF method is applied to free plates, the NDIF method has been considered for free vibration analysis of both a fixed string and a free beam. Finally, verification examples show that natural frequencies obtained by the present method agree well with those given by an exact method or a numerical method (ANSYS).

A Map-Based Boundray Input Method for Video Surveillance (영상 감시를 위한 지도기반 감시영역 입력 방법)

  • Kim, Jae-Hyeok;Maeng, Seung-Ryol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.418-424
    • /
    • 2014
  • In this paper, we propose a boundary input method for video surveillance systems. Since intrusion of a moving object is decided by comparition of its position and the surveillance boundary, the boundary input method is a basic function in video surveillance. Previous methods are difficult to adapt to the change of surveillance environments such as the size of surveillance area, the number of cameras, and the position of cameras because those build up the surveillance boundary using the captured image in the center of each camera. In our approach, the whole surveillance boundary is once defined in the form of polygon based on the satellite map and transformed into each camera environment. Its characteristics is that the boundary input is independent from the surveillance environment. Given the position of a moving object, the time complexity of its intrusion detection shows O(n), where n is the number of polygon vertices. To verify our method, we implemented a 3D simulation and assured that the input boundary can be reused in each camera without any redefinition.

Automatic Heart Segmentation in a Cardiac Ultrasound Image (초음파 심장 영상에서 자동 심장 분할 방법)

  • Lee, Jae-Jun;Kim, Dong-Sung
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.418-426
    • /
    • 2006
  • This paper proposes a robust and efficient segmentation method for a cardiac ultrasound image taken from a probe inserted into the heart in surgery. The method consists of three steps: initial boundary extraction, whole boundary modification using confidence competition, and local boundary modification using the rolling spoke method. Firstly, the initial boundary is extracted with threshold regions along the global spokes emitted from the center of an ultrasound probe. Secondly, high confidence boundary edges are detected along the global spokes by competing among initial boundary candidate and new candidates achieved by edge and appearance information. finally, the boundary is modified by rolling local spokes along concave regions that are difficult to extract using the global spokes. The proposed method produces promising segmentation results for the ultrasound cardiac images acquired during surgery.

Exact solutions to the boundary value problems by VIM

  • Jang, Bong-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1371-1377
    • /
    • 2008
  • In this paper, we have employed the variational iteration method to solve the boundary value problems. Numerical results reveal that it is a very effective method compared with the results obtained by using the Adomian decomposition method in Wazwaz, A. M. (2000).

  • PDF

Calculation of three-dimensional boundary layer near the plane of symmetry of an automobile configuration (자동차 중앙대칭단면 부근의 3차원경계층 계산)

  • 최장섭;최도형;박승오
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.61-69
    • /
    • 1988
  • The finite-difference three-dimensional boundary layer procedure of Chang and Patel is modified and applied to solve the boundary layer development on the automobile surface. The inviscid pressure distribution needed to solve the boundary layer equations is obtained by using a low order panel method. The plane of symmetry boundary layer exhibits the strong streamline divergence up to the midbody and convergence thereafter. The streamline divergence in front of the windshield helps the boundary layer to overcome the sever adverse pressure gradient and avoid the separation. The relaxation of the pressure right after the top of the wind-shield, on the other hand, makes the overly thinned boundary layer to readjust and prompts the streamlines to converge into the symmetry plane before the external streamlines do. The three-dimensional characteristics are less apparent after the midbody and the boundary layer is similar to that of the two-dimensional flow. The results of the off-plane-of-symmetry boundary layer are also presented.

  • PDF

Cause Analysis and Removal of Boundary Artifacts in Image Deconvolution

  • Lee, Ji-Yeon;Lee, Nam-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.838-848
    • /
    • 2014
  • In this paper, we conducted a cause analysis on boundary artifacts in image deconvolution. Results of the cause analysis show that boundary artifacts are caused not only by a misuse of boundary conditions but also by no use of the normalized backprojection. Results also showed that the correct use of boundary conditions does not necessarily remove boundary artifacts. Based on these observations, we suggest not to use any specific boundary conditions and to use the normalized backprojector for boundary artifact-free image deconvolution.

The use of discontinuous first and second-order mixed boundary elements for 2D elastostatics

  • Severcan, M.H.;Tanrikulu, A.K.;Tanrikulu, A.H.;Deneme, I.O.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.703-718
    • /
    • 2010
  • In classical higher-order discontinuous boundary element formulation for two-dimensional elastostatics, interpolation functions for different boundary variables (i.e., boundary displacements and tractions) are assumed to be the same. However, there is a derivational relationship between these variables. This paper presents a boundary element formulation, called Mixed Boundary Element Formulation, for two dimensional elastostatic problems in which above mentioned relationship is taking into account. The formulations are performed by using discontinuous first and second-order mixed boundary elements. Based on the formulations presented in this study, two computer softwares are developed and verified through some example problems. The results show that the present formulation is credible.

Estimation of the Effect of Grain Boundary Diffusion on Microstructure Development in Magnetite Bi-crystal under Oxygen Chemical Potential Gradient at 823 K

  • Ueda, Mitsutoshi;Maruyama, Toshio
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • Mass transport near grain boundary in a magnetite bi-crystal has been estimated at 823 K by finite element method. Mass transport near grain boundary strongly depends on the diffusivities along grain boundary. If grain boundary diffusion has the same oxygen activity dependence as lattice diffusion, there is no mass transport between grains and grain boundary. On the other hand, mass transport between grains and grain boundary is observed in the case that grain boundary diffusion has different oxygen activity dependence.

An iterative boundary element method for a wing-in-ground effect

  • Kinaci, Omer Kemal
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.282-296
    • /
    • 2014
  • In this paper, an iterative boundary element method (IBEM) was proposed to solve for a wing-in-ground (WIG) effect. IBEM is a fast and accurate method used in many different fields of engineering and in this work; it is applied to a fluid flow problem assessing a wing in ground proximity. The theory and the developed code are validated first with other methods and the obtained results with the proposed method are found to be encouraging. Then, time consumptions of the direct and iterative methods were contrasted to evaluate the efficiency of IBEM. It is found out that IBEM dominates direct BEM in terms of time consumption in all trials. The iterative method seems very useful for quick assessment of a wing in ground proximity condition. After all, a NACA6409 wing section in ground vicinity is solved with IBEM to evaluate the WIG effect.