• Title/Summary/Keyword: boundary flow

검색결과 2,817건 처리시간 0.023초

가상 경계 방법을 이용한 정지, 회전 및 진동하는 실린더의 유동 특성에 관한 연구 (The study of the characteristics of the stationary, rotating and oscillating cylinders using the immersed boundary method)

  • 양승호;하만영;박일룡
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.916-921
    • /
    • 2003
  • In most industrial applications, the geometrical complexity is combined with the moving boundaries. These problems considerably increase the computational difficulties since they require, respectively, regeneration and deformation of the grid. As a result, engineering flow simulation is restricted. In order to solve this kind of problems the immersed boundary method was developed. In this study, the immersed boundary method is applied to the numerical simulation of stationary, rotating and oscillating cylinders in the 2-dimensional square cavity. No-slip velocity boundary conditions are given by imposing feedback forcing term to the momentum equation. Besides, this technique is used with a second-order accurate interpolation scheme in order to improve the accuracy of flow near the immersed boundaries. The governing equations for the mass and momentum using the immersed boundary method are discretized on the non-staggered grid by using the finite volume method(FVM). This study presents the possibility of the immersed boundary method to apply to the complex flow experienced in the industrial applications.

  • PDF

자유유동 난류강도 변화에 따른 평판위 천이 경계층의 유동특성에 관한 실험적 연구 (Flow Characteristics of Transitional Boundary Layers on a Flat Plate Under the Influence of Freestream Turbulent Intensity)

  • 신성호;전우평;강신형
    • 대한기계학회논문집B
    • /
    • 제22권9호
    • /
    • pp.1335-1348
    • /
    • 1998
  • Flow characteristics in transitional boundary layers on a flat plate were experimentally investigated under three different freestream conditions i. e. uniform flow with 0.1 % and 3.7% freestream turbulent intensity and cylinder-wake with 3.7% maximum turbulent intensity. Instantaneous streamwise velocities in laminar, transitional and turbulent boundary layers were measured by I-type hot-wire probe. For estimation of wall shear stresses on the flat plate, measured mean velocities near the wall were applied to the principle of Computational Preston Tube Method (CPM). Distributions of skin friction coefficients were reasonably predicted in all developed boundary layers. Intermittency profiles, which were estimated using Conditional Sampling Technique in transitional boundary layers, were also consistent with previously published data. It was predicted that the incoming turbulent intensity had more influence on transition onset point and transition process than freestream turbulent intensity existed just over the transition region. It was also confirmed that non-turbulent and turbulent profiles in transitional boundary layers could not be simply treated as Blasius and fully turbulent profiles.

수직수문하의 경계층흐름 (Boundary Layer Flow Under a Sluice Gate)

  • 이정열
    • 물과 미래
    • /
    • 제27권3호
    • /
    • pp.95-105
    • /
    • 1994
  • 수직수문하의 경계층 흐름(boundary layer flow)이 경계고정좌표계(Boundary- Fitted Coordinate System)에서 무작위 소용돌이 판 방법(Random Vortex Sheet Method)과 요소내 소용돌이 방법(Vortex-in-Cell Method)을 이용하여 수치계산되었다. 수치해에 의한 수문을 따라 형성된 경계층이 수축률의 실험자료와 비점성이론에 의한 그 결과의 차이를 유발하는 주원인인 것으로 보여진다. 그 동안 주원인일 것으로 믿어왔던 바닥면 경게층의 역할은 수문면의 그 것보다는 적은 것으로 수치계산되었다. 또한 차원해석을 통하여 경계층 흐름에 의한 수축율의 그 차이가 수문 길이의 평방근에 반비례하는 것으로 추정되었으며, 이는 Benjamin(1956)에 의하여 분석된 것과 결국 동일한 것임이 밝혀졌다. 수치모델과 차원해석에 따른 결과는 Benjamin(1956)에 의해 얻어진 수축률의 실허미와 비교하여 만족할 만하였다.

  • PDF

입자 분리를 위한 Virtual Cyclone의 실험적 연구 (Experimental Study on Virtual Cyclones as Aerosol Separators)

  • Kim Dae-Seong;Xiang Rongbiao;Lee Gyu-Won
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 춘계학술대회 논문집
    • /
    • pp.301-302
    • /
    • 2002
  • Virtual cyclones have been the subject of aerosol separation studies since they were first developed by Torczynski and Rader (1996). In the virtual cyclone (originally referred to as the anticyclone), the main particle-laden flow follows a wall that curves away from the original flow direction rather than curving into the original direction, as in a cyclone. Although a wall forms the inner boundary of the main flow, its outer boundary is formed by an adjacent flow, often a confined recirculating flow, into which particles are transferred by centrifugal action. (omitted)

  • PDF

다중완화시간 가상경계볼쯔만법을 이용한 실린더 주위의 난류유동해석 (NUMERICAL STUDY ON TURBULENT FLOW OVER CYLINDER USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD WITH MULTI RELAXATION TIME)

  • 김형민
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.21-27
    • /
    • 2010
  • Immersed boundary lattice Boltzmann method (IBLBM) has been applied to simulate a turbulent flow over circular cylinder in a flow field effectively. Although IBLBM is very effective method to simulate the flow over a complex shape of obstacle in the flow field regardless of the constructed grids in the calculation domain, the results, however, become numerically unstable in high reynolds number flow. The most effective suggestion to archive the numerical stability in high Reynolds number flow is applying the multiple relaxation time (MRT) model instead of single relaxation time(SRT) model in the collision term of lattice Boltzmann equation. In the research MRT model for IBLBM was introduced and comparing the numerical results obtained by applying SRT and MRT. The hydraulic characteristic of cylinder in a flow field between two parallel plate at the range of $Re{\leqq}2000$represented and it is also compared the drag and lifting coefficients of the cylinder calculated by IBLBM with SRT and MRT model.

Large eddy simulation of a square cylinder flow: Modelling of inflow turbulence

  • Tutar, M.;Celik, I.
    • Wind and Structures
    • /
    • 제10권6호
    • /
    • pp.511-532
    • /
    • 2007
  • The present study aims to generate turbulent inflow data to more accurately represent the turbulent flow around a square cylinder when the inflow turbulence level is significant. The modified random flow generation (RFG) technique in conjunction with a previously developed LES code is successfully adopted into a finite element based fluid flow solver to generate the required inflow turbulence boundary conditions for the three-dimensional (3-D) LES computations of transitional turbulent flow around a square cylinder at Reynolds number of 22,000. The near wall region is modelled without using wall approximate conditions and a wall damping coefficient is introduced into the calculation of sub-grid length scale in the boundary layer of the cylinder wall. The numerical results obtained from simulations are compared with each other and with the experimental data for different inflow turbulence boundary conditions in order to discuss the issues such as the synthetic inflow turbulence effects on the 3-D transitional flow behaviour in the near wake and the free shear layer, the basic mechanism by which stream turbulence interacts with the mean flow over the cylinder body and the prediction of integral flow parameters. The comparison among the LES results with and without inflow turbulence and the experimental data emphasizes that the turbulent inflow data generated by the present RFG technique for the LES computation can be a viable approach in accurately predicting the effects of inflow turbulence on the near wake turbulent flow characteristics around a bluff body.

증착공정에서의 회전원판 정체점유동에 대한 상사해석 (Similarity analysis of a forced uniform flow impinging on a rotating disk in a vapor deposition process)

  • 송창걸;황정호
    • 대한기계학회논문집B
    • /
    • 제21권3호
    • /
    • pp.371-379
    • /
    • 1997
  • A theoretical study for a forced uniform flow impinging on a rotating disk, typically involved in Chemical Vapor Deposition(CVD) and Vapor-phase Axial Deposition(VAD) processes, has been carried out. A set of exact solutions for flow and temperature fields are developed by employing a similarity variable obtained from force balance on a control volume near the disk. The solutions depend on the rotating speed of the disk, .omega., and the forced flow speed toward the disk, a. For constant forced flow speed, the overall boundary layer thickness decreases when the rotating speed increases. Approximately 5%, 15%, and 30% decreases of the thickness are obtained for .omega./a = 2, 5, and 10, respectively, compared to the case of .omega./a = 0 (axisymmetric stagnation point flow). For constant rotating disk speed the boundary layer thickness immediately decreases as the forced flow speed increases, compared to the case of .omega./a .rarw. .inf. (induced flow near a rotating disk). Effects of .omega. and a on heat transfer coefficient are studied and explained with the boundary layer characteristics.

직사각형 프리즘 주위의 유동구조에 대한 경계층 두께의 영향 (Effect of Boundary Layer Thickness on the Flow Around a Rectangular Prism)

  • 지호성;김경천;이승홍;부정숙
    • 대한기계학회논문집B
    • /
    • 제26권6호
    • /
    • pp.893-901
    • /
    • 2002
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670 mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer($\delta$=270 mm) was the natural turbulent boundary layer at the test section floor with fairly long developing length(18 m). The thin boundary layer($\delta$=36.5 mm) was generated on the smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity(3 ㎧) and the height of the model(40 mm) was 7.9$\times$10$^3$. The mean velocity vector fields and turbulent kinetic energy distributions were measured and compared. The effect of boundary layer thickness was clearly observed not only in the length of separation bubble but also in the location of reattachment point. The thinner the boundary layer thickness, the higher the turbulent kinetic energy Peak around the model roofbecame. It is strongly recommended that the height ratio between the model and the approaching boundary layer thickness should be encountered as a major parameter.

FALKNER-SKAN EQUATION FOR FLOW PAST A MOVING WEDGE WITH SUCTION OR INJECTION

  • Ishak, Anuar;Nazar, Roslinda;Pop, Ioan
    • Journal of applied mathematics & informatics
    • /
    • 제25권1_2호
    • /
    • pp.67-83
    • /
    • 2007
  • The characteristics of steady two-dimensional laminar boundary layer flow of a viscous and incompressible fluid past a moving wedge with suction or injection are theoretically investigated. The transformed boundary layer equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of Falkner-Skan power-law parameter (m), suction/injection parameter ($f_0$) and the ratio of free stream velocity to boundary velocity parameter (${\lambda}$) are discussed in detail. The numerical results for velocity distribution and skin friction coefficient are given for several values of these parameters. Comparisons with the existing results obtained by other researchers under certain conditions are made. The critical values of $f_0$, m and ${\lambda}$ are obtained numerically and their significance on the skin friction and velocity profiles is discussed. The numerical evidence would seem to indicate the onset of reverse flow as it has been found by Riley and Weidman in 1989 for the Falkner-Skan equation for flow past an impermeable stretching boundary.

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 (II) (Numerical Prediction of Unsteady Transitional Boundary Layer Flows due to Rotor-Stator Interaction(II)-Characteristics of Unsteady Transitional Boundary Layer Flow-)

  • 강동진
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.771-787
    • /
    • 1998
  • A Navier-Stokes code with a modified low Reynolds number k-.epsilon. turbulence model was used to study the unsteady transitional boundary layer flow due to rotor-stator interaction. The modification, proposed by Launder, to improve prediction of stagnation flows was incorporated to the low Reynolds number k-.epsilon. turbulence model by Fan-Lakshminarayana-Barnett. Numerical solution is shown to capture well the calmed laminar flow as well as the wake induced transitional strip due to rotor-stator interaction and shows improvement, in terms of onset of transition and its length, over previous Euler/boundary layer solution. The turbulent kinetic energy shows local maximum along the upstream rotor wake in the wake induced transitional strip and this characteristics is observed untill the end of transition. The wake induced strip also shown apparent even in the laminar sublayer as the upstream rotor wake penetrates inside the boundary layer.