• 제목/요약/키워드: boundary flow

검색결과 2,817건 처리시간 0.022초

낮은 종횡비의 직각밀폐용기내의 자연대류 경계층 흐름영역에서의 코어형상에 관한 근사해석 (Analysis of Natural Convection Core Configuration at Boundary Layer Flow Regime in a Low Aspect Ratio Rectangular Enclosure)

  • 이진호;김무현;전주명
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.349-358
    • /
    • 1988
  • 본 연구에서는 낮은 종횡비의 직각밀폐용기의 경계층흐름영역에 대하여 Lee에 의해 공식적인 수학적 방법으로 얻어진 코어방정식을 기초로 코어흐름 형상을 근사해석으로 구하였으며 그 결과를 다른 연구자들의 결과와 비교, 검토하였다.

국소 벽면 진동에 의한 난류경계층 유동 변화 (Modification of Turbulent Boundary Layer Flow by Local Wall Vibration)

  • 김철규;전우평;박진일;김동주;최해천
    • 대한기계학회논문집B
    • /
    • 제24권9호
    • /
    • pp.1255-1263
    • /
    • 2000
  • In this study, the modification of turbulent boundary layer flow by local wall vibration is investigated. The wall is locally vibrated using a wall deformation actuator, which moves up and down at the frequencies of 100Hz and 50Hz. Simultaneous measurements of the streamwise velocities in the spanwise direction are performed at several wall-normal and streamwise locations using an in-house multi-channel hot wire anemometer and a spanwise hot-wire-probe rake. The mean velocity is reduced in most places due to the wall vibration and its reduced amount becomes small as flow goes downstream. Interestingly, the mean velocity is found to increase very near the wall and near the actuator. This is due to the motion induced by the streamwise vortices which are generated by the downward motion of the actuator. In case of the streamwise velocity fluctuations, their magnitude increases as compared to the unperturbed turbulent boundary layer, and the increased amount becomes small as the flow moves downstream. The modified flow field at the forcing frequency of 50Hz is not much different from that of 100Hz, except the reduced amount of modification.

철도터널 화재 유동에 사용되는 FDS code의 적용성 분석 (The Applicability Analysis of FDS code for Fire-Driven Flow Simulation in Railway Tunnel)

  • 장용준;박원희
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.224-230
    • /
    • 2007
  • The performance and applicability of FDS code is analyzed for flow simulation in railway tunnel. FDS has been built in NIST(USA) for simulation of fire-driven flow. RANS and DNS's results are compared with FDS's. AJL non-linear ${\kappa}-{\epsilon}$[7,8] model is employed to calculate the turbulent flow for RANS. DNS data by Moser et al.[9] are used to prove the FDS's applicability in the near wall region. Parallel plate is used for simplified model of railway tunnel. Geometrical variables are non-dimensionalized by the height (H) of parallel plate. The length of streamwise direction is 50H and the length of spanwise direction is 5H. Selected Re numbers are 10,667 for turbulent flow and 133 for laminar low. The characteristics of turbulent boundary layer are introduced. AJL model's predictions of turbulent boundary layer are well agreed with DNS data. However, the near wall turbulent boundary layer is not well resolved by FDS code. Slip conditions are imposed on the wall but wall functions based on log-law are not employed by FDS. The heavily dense grid distribution in the near wall region is necessary to get correct flow behavior in this region for FDS.

자연층류 익형 설계 및 시험 (Design and Wind Tunnel Tests of a Natural Laminar Flow Airfoil)

  • 이융교;김철완;심재열;김응태;이대성
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.354-357
    • /
    • 2008
  • Drag reduction is one of main concerns for commercial aircraft companies than ever because fuel price has been tripled in ten years. In this research, Natural Laminar Flow airfoil is designed and tested to reduce drag at cruise condition, $c_l$=0.3, Re=3.4${\times}$10$^6$ and M=0.6. NLF airfoil is characterized by delayed transition from laminar to turbulent flow, which comes from maintaining favorable pressure gradient to downstream. Transition is predicted by solving Boundary Layer equations in viscous boundary layer and by solving Euler Equation outside the boundary layer. Once boundary layer thickness and momentum thickness are obtained, $e^N$-method is used for transition point prediction. As results, KARI's NLF airfoil is designed and shows better characteristics than NLF-0115. The characteristics are tested and verified at low Reynolds numbers, but at high Reynolds numbers, laminar flow characteristics are not obtainable because of fully turbulent flow over airfoil surfaces. Precious experiences, however, relating NLF airfoil design, subsonic and transonic tests are acquired.

  • PDF

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • 제17권4호
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.

토양증기추출복원 시스템에서 중첩이론을 고려한 무한 경계조건 실행 (Implementation of Infinite Boundary Condition Considering Superposed Theory on SVE Remediation System)

  • 박정준
    • 한국지반신소재학회논문집
    • /
    • 제6권3호
    • /
    • pp.9-16
    • /
    • 2007
  • 토양증기추출공법(SVE)은 불포화 지반상태에서 휘발성 유기화합물(VOCs)과 유류오염 물질을 제거하는데 효과적이고 경제적인 공법중의 하나이다. 본 연구에서는 기존 연약지반의 지반개량시 사용된 연직배수재(PVDs)를 토양증기추출시스템에 적용하여 짧은 공기배출거리로 최대한 신속하게 오염물질을 제거할 수 있게 하여 투기계수가 낮은 지반에서 오염된 토양을 효과적으로 복원할 수 있는 토양증기추출공법을 적용하는데 목적이 있다. 연직배수재를 이용한 토양증기추출시스템 적용시 실제 현장에서 나타나는 무한 경계 조건을 만족하기 위해서 실내에서 파일럿 규모의 오염복원 모형실험을 결과로 유한경계조건 시스템에서 이미지웰 중첩이론을 이용하여 압력분포를 가정하였다. 즉, 압력강하가 없는 일정수두 경계조건 상태와 토조의 상 하부와 같이 흐름이 없는 불투수경계조건 상태를 유지하기 위해서 이미지웰 중첩이론을 도입하여 경계조건을 수립하였다. 결과, 공기흐름률이 증가할수록 흐름비율도 증가하였다. 따라서 높은 흐름률에 대한 흐름비율도 더 커지게 되는 것이고, 최적화과정동안 공기흐름률은 측정 압력수두와 이미지웰 중첩이론으로부터 구해진 이론 압력수두의 오차율에 미치는 가장 중요한 인자로 판단된다.

  • PDF

Numerical Analysis of the Whole Field Flow in a Centrifugal Fan for Performance Enhancement - The Effect of Boundary Layer Fences of Different Configurations

  • Karanth, K. Vasudeva;Sharma, N. Yagnesh
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권2호
    • /
    • pp.110-120
    • /
    • 2009
  • Generally the fluid flows within the centrifugal impeller passage as a decelerating flow with an adverse pressure gradient along the stream wise path. This flow tends to be in a state of instability with flow separation zones on the suction surface and on the front shroud. Hence several experimental attempts were earlier made to assess the efficacy of using boundary layer fences to trip the flow in the regions of separation and to make the flow align itself into stream wise direction so that the losses could be minimized and overall efficiency of the diffusion process in the fan could be increased. With the development of CFD, an extensive numerical whole field analysis of the effect of boundary layer fences in discrete regions of suspected separation points is possible. But it is found from the literature that there have been no significant attempts to use this tool to explore numerically the utility of the fences on the flow field. This paper attempts to explore the effect of boundary layer fences corresponding to various geometrical configurations on the impeller as well as on the diffuser. It is shown from the analysis that the fences located on the impellers near the trailing edge on pressure side and suction side improves the static pressure recovery across the fan. Fences provided at the radial mid-span on the pressure side of the diffuser vane and near the leading edge and trailing edge of the suction side of diffuser vanes also improve the static pressure recovery across the fan.

가상경계 격자볼쯔만법을 이용한 벽면에 근접하여 이동하는 실린더주위의 유동해석 (Numerical Study on Flow over Moving Circular Cylinder Near the Wall Using Immersed Boundary Lattice Boltzmann Method)

  • 김형민
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.924-930
    • /
    • 2008
  • Immersed boundary method (IBM) is the most effective method to overcome the disadvantage of LBM (Lattice Boltzmann Method) related to the limitation of the grid shape. IBM also make LBM possible to simulate flow over complex shape of obstacle without any treatment on the curved boundary. In the research, IBLBM was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of IBLBM on the moving obstacle near the wall, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of moving cylinder in the channel using IBLBM. The simulations were performed in a moderate range of Reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag and lift coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical Reynolds number for vortex shedding is Re=50 and the result is the same as the case of fixed cylinder. As the cylinder approaching to a wall (${\gamma}<2.5$), the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. When the cylinder is very closed to the wall, ${\gamma}<0.6$, the cylinder acts like blockage to block the flow between the cylinder and wall so that the vortex developed on the upper cylinder elongated and time averaged lifting and drag coefficients abruptly increase.

Aeroelastic-aerodynamic analysis and bio-inspired flow sensor design for boundary layer velocity profiles of wind turbine blades with active external flaps

  • Sun, Xiao;Tao, Junliang;Li, Jiale;Dai, Qingli;Yu, Xiong
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.311-328
    • /
    • 2017
  • The characteristics of boundary layers have significant effects on the aerodynamic forces and vibration of the wind turbine blade. The incorporation of active trailing edge flaps (ATEF) into wind turbine blades has been proven as an effective control approach for alleviation of load and vibration. This paper is aimed at investigating the effects of external trailing edge flaps on the flow pattern and velocity distribution within a boundary layer of a NREL 5MW reference wind turbine, as well as designing a new type of velocity sensors for future validation measurements. An aeroelastic-aerodynamic simulation with FAST-AeroDyn code was conducted on the entire wind turbine structure and the modifications were made on turbine blade sections with ATEF. The results of aeroelastic-aerodynamic simulations were combined with the results of two-dimensional computational fluid dynamic simulations. From these, the velocity profile of the boundary layer as well as the thickness variation with time under the influence of a simplified load case was calculated for four different blade-flap combinations (without flap, with $-5^{\circ}$, $0^{\circ}$, and $+5^{\circ}$ flap). In conjunction with the computational modeling of the characteristics of boundary layers, a bio-inspired hair flow sensor was designed for sensing the boundary flow field surrounding the turbine blades, which ultimately aims to provide real time data to design the control scheme of the flap structure. The sensor element design and performance were analyzed using both theoretical model and finite element method. A prototype sensor element with desired bio-mimicry responses was fabricated and validated, which will be further refined for integration with the turbine blade structures.

Frequency Effects of Upstream Wake and Blade Interaction on the Unsteady Boundary Layer Flow

  • Kang, Dong-Jin;Bae, Sang-Su
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1303-1313
    • /
    • 2002
  • Effects of the reduced frequency of upstream wake on downstream unsteady boundary layer flow were simulated by using a Wavier-Stokes code. The Wavier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds number turbulence model to close the momentum equations. The geometry used in this paper is the MIT flapping foil experimental set-up and the reduced frequency of the upstream wake is varied in the range of 0.91 to 10.86 to study its effect on the unsteady boundary layer flow. Numerical solutions show that they can be divided into two categories. One is so called the low frequency solution, and behaves quite similar to a Stokes layer. Its characteristics is found to be quite similar to those due to either a temporal or spatial wave. The low frequency solutions are observed clearly when the reduced frequency is smaller than 3.26. The other one is the high frequency solution. It is observed for the reduced frequency larger than 7.24. It shows a sudden shift of the phase angle of the unsteady velocity around the edge of the boundary layer. The shift of phase angle is about 180 degree, and leads to separation of the boundary layer flow from corresponding outer flow. The high frequency solution shows the characteristics of a temporal wave whose wave length is half of the upstream frequency. This characteristics of the high frequency solution is found to be caused by the strong interaction between unsteady vortices. This strong interaction also leads to destroy of the upstream wake strips inside the viscous sublayer as well as the buffer layer.