• Title/Summary/Keyword: boundary damping

Search Result 295, Processing Time 0.033 seconds

The influence of nonlinear damping on the response of a piezoelectric cantilever sensor in a symmetric or asymmetric configuration

  • Habib, Giuseppe;Fainshtein, Emanuel;Wolf, Kai-Dietrich;Gottlieb, Oded
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.239-243
    • /
    • 2022
  • We investigate the influence of nonlinear viscoelastic damping on the response of a cantilever sensor covered by piezoelectric layers in a symmetric or asymmetric configuration. We formulate an initial-boundary-value problem which consistently incorporates both geometric and material nonlinearities including the effect of viscoelastic damping which cannot be ignored for micro- and nano-mechanical sensor operation in a vacuum environment. We employ an asymptotic multiple-scales methodology to yield the system nonlinear frequency response near its primary resonance and employ a model-based estimation procedure to deduce the system damping backone curve from controlled experiments in vacuum. We discuss the effect of nonlinear damping on sensor applications for scanning probe microscopy.

UNIFORM DECAY OF SOLUTIONS FOR VISCOELASTIC PROBLEMS

  • Bae, Jeong-Ja
    • East Asian mathematical journal
    • /
    • v.19 no.2
    • /
    • pp.189-205
    • /
    • 2003
  • In this paper we prove the existence of solution and uniform decay rates of the energy to viscoelastic problems with nonlinear boundary damping term. To obtain the existence of solutions, we use Faedo-Galerkin's approximation, and also to show the uniform stabilization we use the perturbed energy method.

  • PDF

Transient soil-structure interaction with consistent description of radiation damping

  • Zulkifli, Ediansjah;Ruge, Peter
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.47-66
    • /
    • 2009
  • Radiation damping due to wave propagation in unbounded domains may cause a significant reduction of structural vibrations when excited near resonance. Here a novel matrix-valued algebraic Pad$\acute{e}$-like stiffness formulation in the frequency-domain and a corresponding state equation in the time domain are elaborated for a soil-structure interaction problem with a layered soil excited in a transient manner by a flexible rotor during startup and shutdown. The contribution of radiation damping caused by a soil-layer upon a rigid bedrock is characterized by the corresponding amount of critical damping as it is used in structural dynamics.

Damping Layout Optimization to Reduce Structure-borne Noises in a Two-Dimensional Cavity (이차원 공동의 구조기인소음 저감을 위한 제진재의 최적배치)

  • Lee Doo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.805-812
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of unconstrained damping materials. For the analysis of structural-acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics oJ the viscoelastic materials with frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

  • PDF

Radiation Problem Involving Two-layer Fluid in Frequency-Domain Numerical Wave Tank Using Artificial Damping Scheme (주파수 영역에서 인공감쇠기법을 활용한 복층 유체의 수치조파수조 방사 문제)

  • Min, Eun-Hong;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • There are two wave modes induced by an oscillating body on the free surface of a two-layer fluid: the barotropic and baroclinic modes. To investigate the generated waves composed of two modes, a radiation problem involving a heaving rectangular body was solved in a numerical wave tank. A new artificial damping zone scheme was developed and applied in the frequency-domain analysis. The performance of this damping scheme was compared with given radiation boundary conditions for various conditions. The added mass and radiation damping coefficients for the heaving rectangular body were also calculated for various fluid-density ratios.

Reduction of Structure-borne Noises in a Two-Dimensional Cavity using Optimal Treatment of Damping Materials (제진재의 최적배치를 통한 이차원 공동의 구조기인소음 저감)

  • Lee, Doo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1581-1587
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of viscoelastic unconstrained damping materials. For the analysis of structural- acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics of the viscoelastic materials with respect to frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

Structural Design of Nakanoshima Festival Tower West that Achieved High-Grade Seismic Performance

  • Kumano, Takehito;Yoshida, Satoshi;Saburi, Kazuhiro
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.217-226
    • /
    • 2017
  • This paper summarizes the structural concept and design of the "Nakanoshima Festival Tower West" in Osaka, Japan, which is 200m high and has a super-high damping system. Its superstructure is mainly composed of a central core and outer tube frames. It has a bottom truss structure at the boundary between the low-rise and mid-rise sections of the building, where the column arrangement is changed. Besides, the high-rise section of the building has a neck truss structure. These truss structures smoothly transfer the axial forces of the columns and reduce the flexural deformations induced by horizontal loads. Oil dampers with extremely high damping capacity are installed in the rigid walls named the "Big Wall Frames" of the low-rise section. Moreover, many braces and damping devices are well arranged in the center core of each story. The damping effects of these devices ensure that all structural members are remain within the elastic range and that story drifts are within 1/150 in large earthquakes. This super-high damping structure in the low-rise section is named the "Damping Layer". The whole structural system is named the "Super Damping Structure". The whole structural systems enhance the building's safety, comfort and Business Continuity Planning (BCP) under large earthquakes.

Seismic behavior of isolated bridges with additional damping under far-field and near fault ground motion

  • Losanno, Daniele;Hadad, Houman A.;Serino, Giorgio
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.119-130
    • /
    • 2017
  • This paper presents a numerical investigation on the seismic behavior of isolated bridges with supplemental viscous damping. Usually very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. First, a suggested optimal design procedure is introduced, then seismic performance of three real bridges with different isolation systems and damping levels is investigated. Each bridge is studied in four different configurations: simply supported (SSB), isolated with 10% damping (IB), isolated with 30% damping (LRB) and isolated with optimal supplemental damping ratio (IDB). Two of the case studies are investigated under spectrum compatible far-field ground motions, while the third one is subjected to near-fault strong motions. With respect to different design strategies proposed by other authors, results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution. Thanks to confirmed effective performance in terms of base shear mitigation and displacement reduction under both far field and near fault ground motions, as well as for both simply supported and continuous bridges, the suggested control system provides robustness and reliability in terms of seismic performance also resulting cost effective.

Wave propagation in a 3D fully nonlinear NWT based on MTF coupled with DZ method for the downstream boundary

  • Xu, G.;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-97
    • /
    • 2014
  • Wave propagation in a three-dimensional (3D) fully nonlinear numerical wave tank (NWT) is studied based on velocity potential theory. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing algorithm, B-spline, is applied to eliminate the possible saw-tooth instabilities. The artificial wave speed employed in MTF (multi-transmitting formula) approach is investigated for fully nonlinear wave problem. The numerical results from incorporating the damping zone (DZ), MTF and MTF coupled DZ (MTF+DZ) methods as radiation condition are compared with analytical solution. An effective MTF+DZ method is finally adopted to simulate the 3D linear wave, second-order wave and irregular wave propagation. It is shown that the MTF+DZ method can be used for simulating fully nonlinear wave propagation very efficiently.

ENERGY DECAY RATES FOR THE KELVIN-VOIGT TYPE WAVE EQUATION WITH ACOUSTIC BOUNDARY

  • Seo, Young-Il;Kang, Yong-Han
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.85-91
    • /
    • 2012
  • In this paper, we study uniform exponential stabilization of the vibrations of the Kelvin-Voigt type wave equation with acoustic boundary in a bounded domain in $R^n$. To stabilize the systems, we incorporate separately, the internal material damping in the model as like Gannesh C. Gorain [1]. Energy decay rates are obtained by the exponential stability of solutions by using multiplier technique.