Browse > Article
http://dx.doi.org/10.12989/sss.2022.30.3.239

The influence of nonlinear damping on the response of a piezoelectric cantilever sensor in a symmetric or asymmetric configuration  

Habib, Giuseppe (Department of Applied Mechanics, Budapest University of Technology and Economics)
Fainshtein, Emanuel (Department of Mechanical Engineering, Technion - Israel Institute of Technology)
Wolf, Kai-Dietrich (Institute for Security Systems, University of Wuppertal)
Gottlieb, Oded (Department of Mechanical Engineering, Technion - Israel Institute of Technology)
Publication Information
Smart Structures and Systems / v.30, no.3, 2022 , pp. 239-243 More about this Journal
Abstract
We investigate the influence of nonlinear viscoelastic damping on the response of a cantilever sensor covered by piezoelectric layers in a symmetric or asymmetric configuration. We formulate an initial-boundary-value problem which consistently incorporates both geometric and material nonlinearities including the effect of viscoelastic damping which cannot be ignored for micro- and nano-mechanical sensor operation in a vacuum environment. We employ an asymptotic multiple-scales methodology to yield the system nonlinear frequency response near its primary resonance and employ a model-based estimation procedure to deduce the system damping backone curve from controlled experiments in vacuum. We discuss the effect of nonlinear damping on sensor applications for scanning probe microscopy.
Keywords
nonlinear viscoelastic damping; piezoelectric cantilever sensor; symmetric/asymmetric configuration;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Berman, G.P., Borgonovi, F., Gorshkov, V.N. and Tsifrinovich, V.I. (2006), Magnetic Resonance Force Microscopy and a Single-Spin Measurement, World Scientific, Singapore.
2 Da Silva, M.R.M.C. and Glynn, C.C. (1978), "Nonlinear flexural flexural-torsional dynamics of inextensional beams - equations of motion", J. Struct. Mech., 6(4), 437-448. https://doi.org/10.1080/03601217808907348   DOI
3 Gottlieb, O. and Habib, G. (2012), "Non-linear model-based estimation of quadratic and cubic damping mechanisms governing the dynamics of a chaotic spherical pendulum", J. Vib. Control, 18(4), 536-547. https://doi.org/10.1177/1077546310395969   DOI
4 Poh, S., Baz, A. and Balachandran, B. (1996), "Experimental adaptive control of sound radiation from a panel into an acoustic cavity using active constrained layer damping", Smart Mater. Struct., 5, 649-659. https://doi.org/10.1088/0964-1726/5/5/013   DOI
5 Providakis, C.P., Kontoni, D.P.N., Voutetaki, M.E. and Stavroulaki, M.E. (2008), "Comparisons of smart damping treatments based on FEM modeling of electromechanical impedance", Smart Struct. Syst., Int. J., 4(1), 35-46. https://doi.org/10.12989/sss.2008.4.1.035   DOI
6 Tabaddor, M. (2000), "Influence of nonlinear boundary conditions on the single-mode response of a cantilever beam", Int. J. Solids Struct., 37, 4915-4931. https://doi.org/10.1016/S0020-7683(99)00197-3   DOI
7 Roccia, B.A., Verstaete, M.L., Ceballos, L.R., Balachandran, B. and Preidikman, S. (2020), "Computational study on aerodynamically coupled piezoelectric harvesters", J. Intel. Mater. Sys., 31(13), 1578-1593. https://doi.org/10.1177/1045389X20930093   DOI
8 Roeser, D., Gutschmidt, S., Sattel, T. and Rangelow, I.W. (2016), "Tip motion-sensor signal relation for a composite SPM/SPL cantilever", J. Microelectromech. Syst., 25(1), 78-90. https://doi.org/10.1109/JMEMS.2015.2482389   DOI
9 Sunar, M. and Rao, S. (1999), "Recent advances in sensing and control of flexible structures via piezoelectric materials technology", Appl. Mech. Rev., 52(1) 1-16. https://doi.org/10.1115/1.3098923   DOI
10 Usher, T. and Sim, A. (2005), "Nonlinear dynamics of piezoelectric high displacement actuators in cantilever mode", J. Appl. Phys., 98, 064102, 1-7. https://doi.org/10.1063/1.2041844   DOI
11 Vokoun, D., Samal, S. and Stachiv, I. (2022), "Magnetic force microscopy in physics and biomedical applications", Magnetochemistry, 8(42), 1-14. https://doi.org/10.3390/magnetochemistry8040042   DOI
12 Wolf, K. and Gottlieb, O. (2002), "Nonlinear dynamics of a noncontacting atomic force microscope cantilever actuated by a piezoelectric layer", J. Appl. Phys. 91(7), 4701-4709. https://doi.org/10.1063/1.1458056   DOI
13 Zaitsev, S., Shtempluck, O., Buks, E. and Gottlieb, O. (2019), "Nonlinear damping in a micromechanical oscillator", Nonlin. Dyn., 67, 859-883. https://doi.org/10.1007/s11071-011-0031-5   DOI
14 Kumar, V., Boley, J.W., Yang, Y., Ekowaluyo, H., Miller, J.K., Chiu, G.T.C. and Rhoads, J.F. (2011), "Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers", Appl. Phys. Lett., 98, 153510. https://doi.org/10.1063/1.3574920   DOI
15 Berman, G.P. and Tsifrinovich, V.I. (2022), "Magnetic resonance force microscopy with matching frequencies of cantilever and spin", J. Appl. Phys., 131, 044301. https://doi.org/10.1063/5.0073237   DOI
16 Zuger, O. and Rugar, D. (1994), "Magnetic resonance detection and imaging using force microscope techniques", J. Appl. Phys., 75(10), 6211-6216. https://doi.org/10.1063/1.355403   DOI
17 Hacker, E. and Gottlieb, O. (2017), "Application of reconstitution multiple scale asymptotics for a two-to-one internal resonance in Magnetic Resonance Force Microscopy", Int. J. Nonlin. Mech., 94, 174-199. https://doi.org/10.1016/j.ijnonlinmec.2017.04.013   DOI
18 Hacker, E. and Gottlieb, O. (2020), "Local and global bifurcations in magnetic resonance force microscopy", Int. J. Nonlin. Mech., 99, 201-225. https://doi.org/10.1007/s11071-019-05401-y   DOI
19 Kambali, P.N., Torres, F., Barniol, N. and Gottlieb, O. (2019), "Nonlinear multi-element interactions in an elastically coupled microcantitlever array subject to electrodynamic excitation", Nonlin. Dyn., 98, 3067-3094. https://doi.org/10.1007/s11071-019-05074-7   DOI
20 Manna, M.C., Sheikh, A.H. and Bhattacharyya, R. (2009), "Static analysis of rubber components with piezoelectric patches using nonlinear finite elements", Smart Struct. Syst., Int. J., 5(1), 23-42. https://doi.org/10.12989/sss.2009.5.1.023   DOI
21 Nayfeh, A.H. and Mook, D.T. (1979), Nonlinear Oscillations, Wiley, New York, USA.
22 Minne, S., Manalis, S. and Quate, C. (1999), Bringing Scanning Probe Microscopy up to Speed, Springer Science & Business Media, Kluwer, Dordrecht, The Netherlands.
23 Mishra K., Panda, S.K., Kumar, V. and Dewangan, H.C. (2020), "Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator", Smart Struct. Syst., Int. J., 26(3), 391-401. https://doi.org/10.12989/sss.2020.26.3.391   DOI
24 Nayfeh, A.H. (1981), Introduction to Perturbation Techniques, Wiley, New York, USA.
25 Habib, G., Miklos, A., Enilov, E.T., Stepan, G. and Rega, G. (2017), "Nonlinear model-based parameter estimation and stability analysis of an aero-pendulum subject to digital delayed control", Int. J. Dyn. Contr., 5, 629-643. https://doi.org/10.1007/s40435-015-0203-0   DOI
26 Fainshtein, E. (2005), "Nonlinear dynamics and stability of piezoelectric microbeams with application for atomic microscopy", M.Sc. Thesis; Technion - Israel Institute of Technology, Haifa, Israel.
27 Gottlieb, O., Feldman M. and Yim, S.C.S. (1996), "Paramter identification of nonlinear ocean mooring systems using the Hilbert transform", J. Offshore Mech. And Arctic Eng,. 118, 29-36. https://doi.org/10.1115/1.2828798   DOI
28 Habib, G. (2008), "Experimental analysis of linear and nonlinear vibrations of a piezoelectric cantilever in several conditions", M.Sc. Thesis; Sapienza University of Rome, Rome, Italy.
29 Maugin, G.A. (1985), Nonlinear Electromechanical Effects and Applications, World Scientific, Singapore.
30 Kazakova, O., Puttock, R., Barton, C., Corte-Leon, H., Jaafar, M., Neu, V. and Asenjo, A. (2017), "Frontiers of magnetic force microscopy", J. Appl. Phys. 125, 060901. https://doi.org/10.1063/1.5050712   DOI
31 Mora, K. and Gottlieb, O. (2017), "Parametric excitation of a microbeam-string with asymmetric electrodes: multimode dynamics and the effect of nonlinear damping", J. Vib. Acoust., 139, 040903. https://doi.org/10.1115/1.4036632   DOI
32 Tzou, H. and Tzeng, C. (1990), "Distributed piezoelectric sensor/actuation design for dynamic measurement control of distributed systems: a piezoelectric finite element approach", J. Sound Vib., 138(1), 17-34. https://doi.org/10.1016/0022-460X(90)90701-Z.   DOI
33 Pai, P.B., Wen, A.N. and Schultz, M. (1998), "Structural vibration control using pzt patches and nonlinear phenomena", J. Sound Vib., 215, 273-296. https://doi.org/10.1006/jsvi.1998.1612   DOI
34 Rangelow, I.W., Ivanov, T., Ivanova, K., Volland, B.E., Grabiec, P., Sarov, Y., Persaud, A., Gotszalk, T., Zawierucha, P., Zielony, M. and Dontzov, D. (2007), "Piezoresistive and self-actuated 128-cantilever arrays for nanotechnology applications", Microelect. Eng., 84, 1260-1264. https://doi.org/10.1016/j.mee.2007.01.219   DOI
35 Rugar, D., Budakian, R., Mamin, H.J. and Chui, B.W. (2004), "Single spin detection by magnetic resonance force microscopy", Nature, 430, 329-332. https://doi.org/10.1038/nature02658   DOI
36 Wolf, K. and Gottlieb, O. (2001), "Nonlinear dynamics of a cantilever beam actuated by piezoelectric layers in symmetric and asymmetric configurations", Research Report No. ETR-2001-02, Technion-Israel Institute of Technology.
37 Zaretsky, C.L. and da Silva, M.R.M.C. (1994), "Experimental investigation of nonlinear modal coupling in the response of cantilever beams", J. Sound Vib., 174(2), 145-167. https://doi.org/10.1006/jsvi.1994.1268   DOI
38 Anderson, T.A., Nayfeh, A.H. and Balachandran, B. (1996), "Experimental verification of the importance of nonlinear curvature in the response of a cantilever beam", J. Vib. Acoust. 118(4), 21-27. https://doi.org/10.1115/1.2889630   DOI
39 Betts, D.N., Kim, H.A., Bowen, C.R. and Inman, D.J. (2012), "Optimal configurations of bistable piezo-composites for energy harvesting", Appl. Phys. Lett., 100, 114104. https://doi.org/10.1063/1.3693523   DOI