• Title/Summary/Keyword: bouncing ball

Search Result 6, Processing Time 0.02 seconds

Dynamic Characteristics of Linear Motion Guide Supported by Rolling Ball Bearings (볼 베어링을 이용 Linear Motion Guide의 동적 특성에 관한 연구)

  • 최재석;이용섭;김윤영;이동진;이성진;유정훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.326-331
    • /
    • 2004
  • The linear motion (LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been used widely to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analysis. Linear analysis is accomplished by Lagrange equation and finite element method. And another trial that is nonlinear analysis about one mode of LM guide(bouncing mode) from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.

  • PDF

Dynamic Characteristics of Linear Motion Supported by Rolling Ball Bearings (볼 베어링을 사용하는 선형 운동 가이드의 동적 특성)

  • Choi Jae Seok;Yi Yong-sub;Kim Yoon Young;Lee Dong Jin;Lee Sung Jin;Yoo Jeonghoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.868-876
    • /
    • 2004
  • The linear motion(LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been widely used to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analyses. Linear analysis is accomplished by Lagrange equation and the finite element method. And another trial that performs nonlinear analysis about one mode(bouncing mode) of LM guide from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.

Bouncing Model of Spinning Ball based on Real Trajectory (실측 기반 회전공의 튐 모델)

  • Baek, Seong-Min;Kim, Myung-Gyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.421-423
    • /
    • 2012
  • 본 논문에서는 빠르게 회전하는 공에 대한 바운싱 모델을 제시한다. 제안하는 바운싱 모델은 충격량을 기반으로 공의 회전력, 지면의 탄성 및 마찰력을 고려한다. 제안된 모델의 정확도를 측정하기 위해 그린, 페어웨이 및 러프 지형에서 공의 궤적을 촬영하고, 영상으로부터 공의 실제 궤적을 추출하여 비교한다. 시뮬레이션 모델은 실제 궤적을 기반으로 튜닝함으로써 정확도를 향상시킨다. 본 바운싱 모델은 실감형 스포츠 게임에서 보다 사실감을 높일 수 있다.

Design and Application of a Visual Experience Game in Game Mathematics (게임수학 시각체험 게임 설계 및 적용)

  • Choi, Youngmee
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1504-1512
    • /
    • 2018
  • The purpose of this study is to design and apply a simple game that can visually experience basic concepts of game mathematics in order to teach game mathematics effectively. To do this, simple games linked with game mathematical theory are to be developed by utilizing the functions provided by Unity so that students could actively learn game mathematics. To demonstrate the plausibility of this approach, "Bouncing Ball Game" was developed to understand the concept of periodicity of trigonometric functions. As a result, students were able to effectively learn how mathematical concepts related to ball movements applied to the game.

Implementation and Verification of Linear Cohesive Viscoelastic Contact Model for Discrete Element Method (선형 부착성 점탄성 접촉모형의 DEM 적용 및 해석적 방법을 이용한 검증)

  • Yun, Tae Young;Yoo, Pyeong Jun
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.25-31
    • /
    • 2015
  • PURPOSES: Implementation and verification of the simple linear cohesive viscoelastic contact model that can be used to simulate dynamic behavior of sticky aggregates. METHODS: The differential equations were derived and the initial conditions were determined to simulate a free falling ball with a sticky surface from a ground. To describe this behavior, a combination of linear contact model and a cohesive contact model was used. The general solution for the differential equation was used to verify the implemented linear cohesive viscoelastic API model in the DEM. Sensitivity analysis was also performed using the derived analytical solutions for several combinations of damping coefficients and cohesive coefficients. RESULTS : The numerical solution obtained using the DEM showed good agreement with the analytical solution for two extreme conditions. It was observed that the linear cohesive model can be successfully implemented with a linear spring in the DEM API for dynamic analysis of the aggregates. CONCLUSIONS: It can be concluded that the derived closed form solutions are applicable for the analysis of the rebounding behavior of sticky particles, and for verification of the implemented API model in the DEM. The assumption of underdamped condition for the viscous behavior of the particles seems to be reasonable. Several factors have to be additionally identified in order to develop an enhanced contact model for an asphalt mixture.

Augmented Reality Game Interface Using Hand Gestures Tracking (사용자 손동작 추적에 기반한 증강현실 게임 인터페이스)

  • Yoon, Jong-Hyun;Park, Jong-Seung
    • Journal of Korea Game Society
    • /
    • v.6 no.2
    • /
    • pp.3-12
    • /
    • 2006
  • Recently, Many 3D augmented reality games that provide strengthened immersive have appeared in the 3D game environment. In this article, we describe a barehanded interaction method based on human hand gestures for augmented reality games. First, feature points are extracted from input video streams. Point features are tracked and motion of moving objects are computed. The shape of the motion trajectories are used to determine whether the motion is intended gestures. A long smooth trajectory toward one of virtual objects or menus is classified as an intended gesture and the corresponding action is invoked. To prove the validity of the proposed method, we implemented two simple augmented reality applications: a gesture-based music player and a virtual basketball game. In the music player, several menu icons are displayed on the top of the screen and an user can activate a menu by hand gestures. In the virtual basketball game, a virtual ball is bouncing in a virtual cube space and the real video stream is shown in the background. An user can hit the virtual ball with his hand gestures. From the experiments for three untrained users, it is shown that the accuracy of menu activation according to the intended gestures is 94% for normal speed gestures and 84% for fast and abrupt gestures.

  • PDF