• Title/Summary/Keyword: bottom water

Search Result 2,178, Processing Time 0.034 seconds

The Characteristics of Seasonal Variations of Water Quality in Mokpo Harbour 1. Physical Environment and Organic Pollution (목포항 수질의 계절적 변화 특성 I. 물리 환경과 유기 오염)

  • 김광수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.57-65
    • /
    • 1999
  • The in situ observations and the seawater analyses were conducted at all seasons from July 1996 to April 1999 for the purpose of describing the characteristics of seasonal variations of water quality in Mokpo harbour, Korea. Vertical stratification started to be formed in water column in spring, developed in summer and disappeared in fall. In summer, vertical density distribution of water column was found to be in stable structure with lower temperature and higher salinity of bottom water, and the vertical mixing of water between surface and bottom layers was restricted. In winter, however, surface water was found to be similar to bottom water in temperature and salinity, and water column was in unstable structure and in well-mixed condition between surface and bottom waters. The saturation percentage of dissolved oxygen(DO) in bottom water of inner part of Mokpo harbour at all seasons was shown to be decreased to the third grade or under the third grade of Korean standards of seawater quality. In particular, dissolved oxygen was oversaturated in surface water and undersaturated in bottom water in summer, due to stratification and organic pollution. The difference of DO concentration between surface and bottom waters was found to be greater in spring and summer than in fall and winter, due to stratification and photosynthesis of phytoplankton. The concentrations of chemical oxygen demand(COD) over the entire waters of Mokpo harbour were found to fluctuate from below the third grade to the first grade of Korean standards through all seasons and COD concentrations of same seasons were shown to be different year after year. In particular, in view of COD, the annual average seawater quality of Mokpo harbour was evaluated to be in third grade of Korean standards, due to organic pollution. The average COD of surface water was greater than that of bottom water in spring and summer, due to the autochthonous COD caused by production of phytoplankton in surface waters, while the average COD of surface water was similar to that of bottom water in fall and winter, due to the vertical mixing of water between surface and bottom layers.

  • PDF

Comparison of the nutrient concentration between surface water and ground water in a rural watershed (농촌 소유역에서의 지표수와 지하수의 영양물질 농도 비교)

  • Song, Chul-Min;Kim, Jin-Soo;Oh, Kwang-Young;Gwon, Seong-Il;Jiang, Jie
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.157-161
    • /
    • 2007
  • Nutrients were investigated for surface water, bottom sediment and ground water in a rural watershed from January 2006 to March 2007. The concentrations of TN and $NO_3-N$ in ground water were higher than those in surface water due to fertilization on cabbage upland neighboring a river during March to August, but lower than those in surface water during September to February. However, the concentrations TP and $PO_4-P$ in ground water were lower than those in surface water. The concentrations of TP and $PO_4-P$ in surface water was lower than those in bottom sediment. The TP concentration in the bottom greatly decreased during rainy season. due to flush sediment of bottom, and then gradually increased.

  • PDF

Mode Change of Deep Water Formation Deduced from Slow Variation of Thermal Structure: One-dimensional Model Study (열적 수직 구조의 장기 변화로부터 유추한 동해 심층수 형성 모드의 변환: 1차원 모델 연구)

  • Chae, Yeong-Ki;Seung, Young-Ho;Kang, Sok-Kuh
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2005
  • Recently, it has been observed in the East Sea that temperature increases below the thermocline, and dissolved oxygen increase in the intermediate layer but decrease below it. The layer of minimum dissolved oxygen deepens and the bottom homogeneous layer in oxygen becomes thinner. It emerges very probably that these changes are induced by the mode change of deep water formation associated with global warming. To further support this hypothesis, a one-dimensional model experiment is performed. First, a thermal profile is obtained by injecting a cold and high oxygen deep water into the bottom layer, say the bottom mode. Then, two thermal profiles are obtained from the bottom mode profile by assuming that either all the deep water introduce into the intermediate layer has been initiated, say the intermediate mode, or that only a part of the deep water has been initiated into the intermediate layer, say the intermediate-bottom mode. The results, from the intermediate-bottom mode experiment are closest to the observed results. They show quite well the tendency for oxygen to increase in the intermediate layer and the simultaneous thinning of the bottom homogeneous layer in oxygen. Therefore, it can be said that the recently observed slow variation of the thermal structure might be associated with changes in the deep water formation from the bottom mode to the intermediate-bottom mode.

Flow behaviors of square jets surface discharged and submerged discharged into shallow water (천해역에 수표면 및 수중방류된 사각형제트의 흐름 거동)

  • Kim, Dae-Geun;Kim, Dong-Ok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.627-634
    • /
    • 2011
  • In the present study, the flow behaviors of square jets surface discharged and submerged discharged into shallow water were each simulated using computational fluid dynamics, and the results were compared. As for the verification of the models, the results of the hydraulic experiment conducted by Sankar, et al. (2009) were used. According to the results of the verification, the present application of computational fluid dynamics to the flow analysis of square jets discharged into shallow water was valid. As for the wall jet, which is one form of submerged discharges, at the bottom wall boundary, the peak velocity of the jet rapidly moved from the center of the jet to the bottom wall boundary due to the restriction of jet entrainment and the no-slip condition of the bottom wall boundary, and, as for the surface discharge, because jet entrainment is limited on the free water surface, the peak velocity of the jet moved from the center of the jet to the free water surface. This is because jet entrainment is restricted at the bottom wall boundary and the surface so that the momentum of the central core of the jet is preserved for considerable time at the bottom wall boundary and the surface. In addition, due to the effect of the bottom wall boundary and the free water surface, the jet discharged into shallow water had a smaller velocity diminution rate near the discharge outlet than did the free jet; at a location where it was so distant from the discharge outlet that the vertical profile of the velocity was nearly equal (b/x =20~30), moreover, it had a far smaller velocity diminution rate than did the free jet due to the effect of the finite depth.

Comparison of Geotechnical Characteristics of Bottom Ash for Lightweight Fill Material (경량 성토재 활용을 위한 석탄 저회 물성 비교)

  • Kim, Yun-Ki;Lee, Sung-Jin;Shin, Min-Ho;Lee, Seung-Rae;Lee, Yong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.679-686
    • /
    • 2010
  • Mechanical characteristics of bottom ash produced in coal-fired power plant are investigated to utilize as light-weight fill materials. Triaxial compression test, water retention test, and unsaturated direct shear test were conducted for weathered soil (WS), reclaimed bottom ash (RBA), and screened bottom ash (BA). RBA had larger frictional angle and lower effective cohesion than those of WS. Water retention charactersitics of RBA and BA existed within distributions of soil-water characteristic curves for domestic weathered soils. Unsaturated shear strength of RBA was similar to that of WS at matric suctions of 50 kPa and 100 kPa. As a conclusion, bottom ash can be used as fill materials to replace the conventional construction materials by.

  • PDF

Mechanical & Physical Properties of Flowable Fill Using Bottom Ash (폐석탄회를 사용한 저강도충전재의 물리.역학적 특성)

  • 원종필;이용수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.915-920
    • /
    • 2000
  • The effectiveness of bottom ash on the slump flow, compressive strength of flowable fill is investigated in this study. This study was undertaken on the use of bottom ash as a fine aggregate in flowable fill. Bottom ash is combined with portland cement, fly ash, and water to flowable fill with slump flow(20~30cm). Four different level of bottom ash with fly ash contents, 25%, 50%, 75%, 100% are investigated. Laboratory test results conclude that the inclusion of bottom ash increases the demand for mixing water n obtaining the require slump flow.

The Flow Characteristic Variation by Installing a Movable Weir having Water Drainage Equipment on the Bottom (저층수 배출식 가동보 설치에 따른 흐름특성)

  • Choi, Gye-Woon;Byeon, Seong-Joon;Kim, Young-Kyu;Cho, Sang-Uk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.117-122
    • /
    • 2008
  • Generally, water is taken through channels and rivers, in which there are many weirs and structures, which cross rivers and temporally hold up water. But this way has its own shortcomings. It is main reason that the water flows through structures, and backwater come into being. So it causes many water quality problems and some flood side-effects and so on. In this study, among the various movable weirs, we installed bottom-discharged and air pressure movable weir in the experimental channel. And we analyzed flowing influence, which is followed by the angle variation of movable weir. We also make further study the flow characteristic variation followed by installing entrance at the bottom to discharge the bottom water. The analysis result was that installed weir angle was increased, and the discharge also gradually increased. The installed weir angle depended on the water quantity, which can be excluded in the bottom. In case of velocity, there was increased as maximum 21.9 times, according to there is entrance or not at the bottom. And in case of water level, it showed the water level of locally above the average decrease in the upper river of weir.

A Study on the Upwelling Phenomena of Anoxic Bottom Water (Blue Tide Phenomena) in the Coastal Areas (연안역에서의 저층 빈 산소수의 용승현상(청조현상)에 관한 연구)

  • 윤종성
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.291-300
    • /
    • 1998
  • Recently, upwelling of anoxic bottom water mass have been frequently observed in northeast part of Tokyo Bay in Japan during summer to autumn. Since the colour of water surface becomes milkyblue or milkygeen, the upwelling phenomenon Is called 'Blue Tide'. The data analysis of field surveys during 'Blue Tide' appearance have been performed for understanding the physical features of the 'Blue Tide' phenomena In Tokyo Bay. It becomes clear that (1) the formation of the anoxic bottom water correlates well with the temperature difference between the surface and bottom waters, (21 there are two necessary conditions for generating 'Blue Tide': that Is, strong stratincation and off-shore wind. The strong southwest(on-shored wand before the 'Blue Tide' appearance may play an iniportant role to make the striancation strengthen. When these conditions are larger and the northeast or east-northeast (off-shored wind stronger than S ifs blows In succession, the 'Blue Tide' upwelling appears at the head of Tokyo Bay.

  • PDF

Seepage Velocity and Borehole Image of Bottom Protection Layer Filled with Dredged Sand in Sea Dyke (준설해사로 충진된 바닥보호공의 형상 및 침투유속평가)

  • Oh, Young-In;Kang, Byung-Yoon;Kim, Ki-Nyeon;Cho, Young-Gwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1727-1734
    • /
    • 2008
  • After the final closure of sea dyke, seepage behaviour of embankment is highly changed by variation of water head different between tide wave and controlled water level at fresh lake. Especially, the seepage behaviour of bottom protection layer of final closure section is more important factor for structural and functional stability of sea dyke, because of the bottom protection layer of final closure section is penetrated sea side to fresh lake. Even though bottom protection layer was filled with dredged fine sand, it has a high permeability. In this paper, mainly described about the seepage velocity and borehole image of bottom protection layer filled with dredged sand after final closure. Various in-situ tests such as BIPS (Borehole Image Processing System) and ABI (Acoustic Borehole Imager) survey, wave velocity measuring, and color tracer survey were conducted to evaluate the seepage behavior of bottom protection layer. Based on the in-situ tests, the bottom protection layer of final closure section was almost filled with dredged sand which is slightly coarse grain sand and there have sea water flow by water head different between tide wave and controlled water level at fresh lake. Also, comply with tracer survey results, the sea water flow path was not exist or generated in the bottom protection layer. However, because of this result not only short term survey but also just one test borehole survey results, additional long term and other borehole tests are needed.

  • PDF