• Title/Summary/Keyword: bottom boundary layer

Search Result 131, Processing Time 0.024 seconds

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Surf-Zone Using LES and Dynamic Smagorinsky Turbulence Model (LES와 Dynamic Smagorinsky 난류모형을 이용한 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-84
    • /
    • 2020
  • Natural shoreline repeats its re-treatment and advance in response to the endlessly varying sea-conditions, and once severely eroded under stormy weather conditions, natural beaches are gradually recovered via a boundary layer streaming when swells are prevailing after storms cease. Our understanding of the boundary layer streaming over surf-zone often falls short despite its great engineering value, and here it should be noted that the most sediments available along the shore are supplied over the surf-zone. In this rationale, numerical simulation was implemented to investigate the hydraulic characteristics of boundary layer streaming over the surf zone in this study. In doing so, comprehensive numerical models made of Spatially filtered Navier-Stokes Eq., LES (Large Eddy Simulation), Dynamic Smagorinsky turbulence closure were used, and the effects of turbulence closure such as Dynamic Smagorinsky in LES and k-ε on the numerically simulated flow field were also investigated. Numerical results show that due to the intrinsic limits of k-ε turbulence model, numerically simulated flow velocity near the bottom based on k-ε model and wall function are over-predicted than the one using Dynamic Smagorinsky in LES. It is also shown that flow velocities near the bottom are faster than the one above the bottom which are relatively free from the presence of the bottom, complying the typical boundary layer streaming by Longuet-Higgins (1957), the spatial scope where boundary layer streaming are occurring is extended well into the surf zone as incoming waves are getting longer. These tendencies are plausible considering that it is the bottom friction that triggers a boundary layer streaming, and longer waves start to feel the bottom much faster than shorter waves.

Dissolved Oxygen at the Bottom Boundary Layer of the Ulleung Basin, East Sea (동해 울릉분지 해저 경계면의 용존산소)

  • Kang, Dong-Jin;Kim, Yun-Bae;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.439-448
    • /
    • 2010
  • General consensus on typical vertical profile of dissolved oxygen in the Ulleung Basin is that dissolved oxygen concentration beyond 300 m decreases with increasing depth. However, the results of our observations in 2005 and 2006 revealed three different dissolved oxygen distribution types in the deep layer of the Ulleung Basin. The first type showed oxygen concentration decreasing with increasing depth (Type-1), the second showed oxygen concentration decreasing very sharply near the bottom boundary layer but constant in the bottom adiabatic layer (Type-2), the final was of the oxygen minimum layer above the bottom boundary layer (Type-3). Type-2 was the most common pattern in the Ulleung Basin. Type-1 was most common close to the Japan Basin, including the Ulleung Interplane Gap, while Type-3 was found around Dok do. Oxygen Consumption Rate (OCR) at surface sediment estimated using the dissolved oxygen distribution at the bottom boundary layer was $0.2{\sim}5.8\;mmol{\cdot}m^{-2}d^{-1}$, which coincided with OCR from direct sediment incubation. This implies that organic matter decomposition at surface sediment may play an important role in dissolved oxygen distribution patterns at the bottom boundary layer of the Ulleung Basin.

A CLOSED-FORM SOLUTION FOR TURBULENT WAVE BOUNDARY LAYERS

  • Larson, Magnus
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.66-70
    • /
    • 1995
  • The oscillatory boundary layer that develops when surface waves propagate over the sea bottom affects many flow-pendent phenomena in the coastal zone. Examples of such phenomena are wave energy dissipation due to bottom friction and the initiation and transport of sediment (Grant and Madsen 1986). In nature the boundary layer under waves will almost always be turbulent (Nielsen 1992). (omitted)

  • PDF

On the Sediment Transport Characteristics of the Bottom Turbulent Boundary Layer (저면난류경계층(底面亂流境界層)의 저질이동특성(底質移動特性))

  • Kim, Nam Hyeong;Kiyoshi, Takikawa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.267-277
    • /
    • 1993
  • A finite element method(FEM) is presented and applied to the two-dimensional bottom turbulent boundary layer. The time-dependent incompressible motion of a viscous fluid is formulated by using the well-known Navier-Stokes equations and vorticity equation in terms of the velocity and pressure fields. The general numerical formulation is based on Galerkin method and solved by introducing the mixing length theory of Prandtl for eddy kinematic viscosity of a turbulent flow field. Numerical computations of the transport of sediment on an arbitrary sea-bed due to wave motion in the turbulent boundary layer are carried out. The results obtained by the FEM made clear the difference in characteristic features between the boundary layer due to oscillatory flow and the boundary layer due to wave motion.

  • PDF

The Perfectly Matched Layer applied to the Split-Step Pade PE Solver in an Ocean Waveguide

  • Lee, Keun-Hwa;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3E
    • /
    • pp.131-136
    • /
    • 2006
  • The PML developed for the radio wave propagation is a powerful numerical domain truncation technique. We perform an analytic study on the reflection from the PML inserted in the ocean bottom. In the ocean bottom, we show the PML to have the improved performance but simultaneously the degeneration below the critical angle of the fast ocean bottom. The degeneration of the PML can be simply relaxed by stretching the thickness of the PML or putting the attenuation coefficient to the ocean bottom. As a better solution, we propose the improved truncation technique based on the PML and the non-local boundary condition. Finally, we apply the PML to the acoustic wave propagation using split-step Pade PE solver. For the problems of the ocean waveguide, the numerical efficiency of the PML is examined and the usefulness of the PML is confirmed.

Theoretical and Numerical Analysis of Sink Flows under a Background Rotation (배경회전이 있는 싱크 유동의 이론 및 수치해석)

  • Suh Yong Kweon;Yeo Chang Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.38-44
    • /
    • 2004
  • Theoretical and numerical studies are given to the sink flows within a rotating circular tank driven by the fluid withdrawal from a bottom circular hole. It was found that, when the upper free surface was set with no-slip boundary conditions, the Ekman boundary-layer develops not only above the bottom surface but under the top surface. The sink fluid is coming from the two Ekman layers, and the mass transfer from the bulk, inviscid region is dependent on the rotational speed. It is also remarkable to see that all the fluid gathered along the axis flows in a form of rapidly rotating fluid column haying almost the same diameter as the bottom hole.

  • PDF

FLUID DYNAMIC IMPLICATIONS OF THE INTERMITTENCY OF TURBULENT MOMENTUM TRANSPORT IN THE OCEANIC TURBULENT BOUNDARY LAYER (海洋 亂流境界層內 斷續性의 流體力學的 意義)

  • Chung, Jong Yul;Grosch, Chester E.
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.104-110
    • /
    • 1983
  • The Intermittent phenomena of the turbulent momentrm transports were closely examined in order to know the nature of intermittency and its fluid dynamic implications in the oceanic turbulent boundary layer. Also the connection between the observed intermittency and the bursting phenomenon was studied in detail. In this investigation, strong intermittency of turbulent momentum transports were found and the peak values of Reynolds stress (i,e., u'w') was about 408 times greater than average Reynolds stress (u',w') in the mid-layer and 270 times greater in the uppcrlayer of the turbulent boundary layer. These values are far greater than presently known maximum value, namely 30 times greater than the average Reynolds stress reported by Gordon (1974) and Heathersaw (1974). The distribution of Reynolds stress were extremely non-normal with the mean peak occurrence period of 5 minutes in the mid-layer and 1. 1 minutes in the upper layer of the turbulent boundary layer. Each teak lasted about 2 seconds in the mid-layer and 1.1 seconds in the upper layer of the turbulent boundary layer. Our dimensionless period of peak occurrence are found to be 33.3 in the mid-layer and 7.3 in the upper-layer, which are substantially larger than the often quoted values of 3.2-6.8 for the bursting period (Jackson, 1976). Some workers have interpreted that the intermittency phenomenon is the retlect of burst across their probe of the currentmeter (Gordon, 1974; Heathersaw, 1974). However, it was known that the burst can be found very near bottom boundary with smoothed bottom (i,e., friction Reynolds number$\leq$3,000) in the laboratory experiments. Through this investigation, it was found that the intermittent strength of the turbulent momentum transports does not conclusively indicate the characteristic feature of the boundary layer turbulence with a rough bottom (i,e., friction Reynolds number$\geq$10$\^$5/).

  • PDF

Bottom Mass Transport Considering the Interaction of Waves with an Array of N Circular Cylinders (N개의 원형 실린더 주위에서의 해저면 토사이동)

  • Cho, I. H.;Hong, S. Y.
    • Journal of Korean Port Research
    • /
    • v.9 no.1
    • /
    • pp.57-63
    • /
    • 1995
  • In this paper we examine the mass transport within the boundary layer near the sea bottom. The fluid domain is seperated into inner and outer region of boundary layers. In outer region, the wave field is assumed to be inviscid and irrotational. When the incident waves enter the arrays of circular cylinders, the scattering of water waves by an array of N bottom mounted vertical circular cylinders is solved using the method proposed by Linton & Evans under the potential theory. In inner region, the Navier-Stokes equation must be satisfied with boundary conditions at the boundary later and bottom is to be represented by the sum of the Eulerian mean drift and the Stokes' drift.

  • PDF

Reduction of Normal Shock-Wave Oscillations by Turbulent Boundary Layer Flow Suction (경계층 유동의 흡입에 의한 수직충격파 진동저감)

  • Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1229-1237
    • /
    • 1998
  • Experiments of shock-wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer suction on normal shock-wave oscillations caused by shock wave/boundary layer interaction in a straight duct. Two-dimensional slits were installed on the top and bottom walls of the duct to bleed turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled below the range of 11 per cent. Time-mean and fluctuating wall pressures were measured, and Schlieren optical observations were made to investigate time-mean flow field. Time variations in the shock wave displacement were obtained by a high-speed camera system. The results show that boundary layer suction by slits considerably reduce shock-wave oscillations. For the design Mach number of 2.3, the maximum amplitude of the oscillating shock-wave reduces by about 75% compared with the case of no slit for boundary layer suction.

Laboratory Experiment of Two-Layered Fluid in a Rotating Cylindrical Container (Simulation of polar Front) (원통형 이층유체의 회전반실험 (극전선 모의))

  • 나정열;최진영
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.296-303
    • /
    • 1994
  • Rotating right cylinder of rigid sloping boundaries(top-bottom) is filled with two-layered fluid. External fluid which has the same density as the lower-layer is pumped through the rim boundary at the bottom, and this induces uniform vertical velocity in the interior that produces the Sverdrup type motion such as southward flowing western boundary current with northward interior horizontal motion. The rigid sloping upper boundary meets with lower layer to simulate so called "polar front", and the upper-layer motion influenced by the lower-layer flow has been observed. Barotropic motion in the western part of the basin while baroclinic motion in the eastern half is always present. In particular, both southward flowing eastern boundary flow and western boundary flow meets near the western wall and it induces northward western boundary flow to separate from the boundary With increased ${\beta}$-effect on the upper0layer the width of western boundary decreases and the separated western boundary flow moves into the interior to form an eddy-like motion. Baroclinic Rosebay wave clearly observed in the easter boundary slowly propagates to the west but it seems to be decayed before travelling to the western boundary. A local topograpic effect imposed on the lower-layer causes very sensitive response of upper layer boundary flows. In the east standing0wave0like features are observed in the west whereas the width of the boundary increases without any evidence of the separation of the western boundary flow.This may be due to the gact that even the lower-lauer barotropic motion feels the topography its influence does not propagate into the upper-layer. With large ${\beta}$-effect on the upper-layer,relatively large scale waves whose wavelengths are greater than the internal radius deformation exist in the interior.

  • PDF