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Abstract

A finite element method(FEM) is presented and applied to the two-dimensional bottom turbulent
boundary layer. The time-dependent incompressible motion of a viscous fluid is formulated by
using the well-known Navier-Stokes equations and vorticity equation in terms of the velocity and
pressure fields. The general numerical formulation is based on Galerkin method and solved by
introducing the mixing length theory of Prandtl for eddy kinematic viscosity of a turbulent flow
field. Numerical computations of the transport of sediment on an arbitrary sea-bed due to wave
motion in the turbulent boundary layer are carried out. The results obtained by the FEM made
clear the difference in characteristic features between the boundary layer due to oscillatory flow
and the boundary layer due to wave motion.
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1. Introduction .
layer flow over sand-rippled beds. However, our

knowledge on the boundary layer flow over sand-
rippled beds is still limited due to the complicated
features of the boundary layer flow which involve
vortices and turbulence. As a basis of the investi-
gation of this object, effective numerical simulation

In order to understand mechanisms of sediment
movement as well as energy dissipation, it is es-
sential to elucidate characteristics of the boundary
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techniques combined with the progress of large-
sized computer are required for the analysis of
the complicated boundary layer varying in time
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and space. Although finite difference methods still
dominate most of this field at present, the applica-
tions of finite element method to fluid mechanics
for stable and accurate computations seem to be
increasing. Recently, numerical research efforts
have been made by many researchers to formulate
and apply the boundary layer flow analysis(see
e.g. References 1-6). Much of those work has been
related to the solution of the so-called(k, &) turbu-
lence model in conjunction with the Reynolds
averaged momentum equations. In addition, many
of these finite element analvses have concentrated
on the solution of the steady-state form of these
equations,

It seems that there are no analytical examples
for a boundary layer over sand-ripples with boun-
dary conditions due to wave motion, but there
is a difference between oscillatory flow and wave
motion in the boundary layer. The objective of
the present study is to describe the characteristics
in this boundary layer. The turbulent boundary
layer on sea-beds of arbitrary shape for arbitrary
mean flow is analyzed using the finite element
method based on Galerkin method. Several nume-
rical computations are carried out. The results of
oscillatory flow and those of wave motion for bou-
ndary layer on a sea-bed are compared.

2. Numerical analysis

2.1 Formulation by FEM

We consider the turbulent boundary layer flow
on an arbitrary sea-bed in a two dimensional do-
main with the coordinates taken such that the x-
axis coincides with the horizontal oriented positi-
vely to the right and the y-axis coincides with
the vertical oriented positively upwards, and the
origin is at the bottom. In the case of two-dimen-
sional, incompressible and turbulent flow by intro-
ducing Navier-Stokes equations(N-S
equation) for the mean flow, we obtain the follo-
wing system of differential equations :

into the

U oy =F,
ot ox dy

ou 9w oou o 1o 0
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where velocity u and v denote the mean velocity
in x-direction and y-direction, respectively, and
are unknown variables in the above equation. p
is the density, p is the pressure, v is the kinematic
viscosity, €. is the eddy kinematic viscosity, and
F. and F, are the mass force. There is a lot of
controversy concerning the estimation of this e..
A number of models with respect to &. have been
proposed. As a simplified model, we treat Reyno-
lds stress in the turbulence as Prandtl's mixing
length theory™ in this paper. The estimation of
€. can be expressed as

3)

To make use of this equation it is necessary to
adopt some expression for the mixing length /.
The scale of the turbulent eddies increases with
the distance from the bottom boundary. The most
obvious assumption is

[=ky (4)

where the constant k is the Karman constant,
which we take equal to 0.4 y , and is the distance
from the bottom boundary along the x-direction.
For analytical stability and easy treatment, the vo-
rticity equation in present paper is induced and
used. By differentiating the eq.(1) with respect to
v and eq.(2) with respect to x, the pressure term
and the mass force term are eliminated from the
N-S equations and the vorticity equation is obtai-
ned as

w  ow  aw

ot ox dy

¢ ow 0 ow

——{(vte) —}+ —{(vte) — 5
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_ov  du
ST e (6)
T oox dy
w is the vorticity and is positive counter-clock-
wise. From the above assumptions, the continuty
equation is given as
0
Gu | v

% _6—;:0 "

The relationship between the velocity compo-
nent u and v and the stream function y can be
described as :

SCLI— ) ®

= ' VV-
dy Jx
Substituting eq.(8) into eq.(6), the new equation
with respect to vorticity w and stream function
v is obtained as follows :

Viy=—w C)]

where V¢ represents the following differential
operator.

, 0 0”
vi= ¢ L
ox*  oy®

In order to eliminate velocity u and v from eq.
(5), we substitute and eq.(8) into eq.5). Accordi-
ngly, the turbulent vorticity equation of the unk-
nown quantity related to stream function y and
vortex w is given as follows :

ow oy ow

(T Ty (- Z)=(v+e)Viw (10)

3t ( y ox )= ) ( IVaw (

Using the weighted residual method, eqs.(9) and
(10) are written in the following manner :

f v Viyd+ f _yawd=0 (11)
dy ow dy ow
* + —— =
f v dQ f ay ox dx oy )
- an «(VH+e)ViwdQ =0 12)

where y« and w, are the weighting functions.
By partial integrations using the Green-Gauss
theorem, we have correspondingly
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The domain of analysis is divided into triangu-
lar elements. The unknown quantities v, ye, W
and w. employing linear function are approxima-
ted inside the triangle element such that

W Z¢‘W‘ q)\y’ W* Z(DLWM—(I) Wt

W= ZQ)iWi:(DTW, Wi = Z (D‘W*i:(DTW*
i=1 i=1
in which ¢; is the interpolation function. i, y«,

w; and w,, are the nodal values. The shape of
the interpolation function is

1
Oy = EE(au+baX+ Gy) (@=123) (16)
in which A® is the area of triangle element, and
4, b, and ¢, are the coefficients decided in each

element. Substituting eq.(15) into eqs.(13) and(14),
the element equations are obtained as

3 3
;Duwﬁw ﬁZ} Mogwg— Do =0 an

Z Mapwg + Z Aggwp+ Z (v+&)Dogwp— e =0
g=1 B=1 g=1
(@=123)

where
. dw, h
A dtB’
_ > 00 0%y & 90 dy
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After discretization eqs.(17) and(18) for the all
elements by a conventional procedure, the system
equations can be written in the following matrix
form :

(Aly—[MJw—TI:=0 (20)
IMIw+[Alw+(v+e)[DIw—Ty=0 (21)

where matrix [D], [M] and [A] are the total
matrix with respect to the element D, M, and
Ayp respectively. I'; and I’y are the natural boun-
dary conditions.

After some manipulation, the matrix becomes
of the banded type here. Therefore, the simulta-
neous equations obtained from eqs.(20) and(21)
must be sloved. In order to solve the simultaneous
equations, we employ the incremental method
which is used widely in the analysis of non-linear
field problems since the matrix [A] in eq.(21) inc-
ludes a non-linear term of unknown y. Here we
defined the increments Ay and Aw between two
successive time instant t, and ty+ At, as follows

=y Ay
w=wot+ Aw (22)

where y,, we and v, w are the values of y, w
at the time t, and to+ At, respectively. Also, a
finite difference form for the time term in eq.(21)
can be taken as

T, (23)

in which the subscript 0 denotes a value at the
time t— At. For simplicity, At is fixed. In order
to leave the characteristics of implicit scheme, fi-
rst, if we impose the n-th approximate value of
w, we can seek the n+1st approximate value of
v in eq.(20). Secondly, if we give the n-th approxi-
mate value of v, we can find the n+ 1st approxi-
mate value of w in eq.(21). By doing so. we can
use the semi-implicit scheme iterating until the
convergence criterion is satisfied. The following
convergence criterion at each time step is given

4
MAX, | W TwW | <, =120, No (24
W
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where N; is the total number of nodal points and
the superscript n indicates the n-th iteration. In
the present examples, the parameter & is fixed
at 0.01. By this procedure, the computational time
is reduced and stable solutions are obtained.

2.2 Boundary conditions

Boundary conditions must be given as either
essential boundary conditions or natural boundary
conditions for y and w on the boundary in the
analytical domain. A rectangular shape domain as
shown Fig. 1 is selected with a height and length
15cm and 48 cm respectively. Here in order to
obtain the exact results, we divide the parts from
bottom boundary to height into finer mesh, exactly
2 times, than other parts. The region is divided
mto triangles whose spacings are set to he uni-
form in x-axis and to be different in y-axis owing
to the location of the nodal point over sand-ripple.
The houndary of analytical domain is defined as
follow; A-B as the input boundary, B-C as the
bottom boundary, C-D as the output houndary,
and A-D as the free surface boundary. We assume
the boundary conditions were taken from the
theory of the linear laminar flow. That is why
it is impossibe to establish the boundary condi-
tions of the turbulent flow till now. In order to
eliminate the influence by introducing the boun-
dary conditions of the linear laminar flow, we take
the wider domain than virtual domain needed in
analysis, From the theory of the laminar flow, the
N-S equation, the continuty equation and the
equation of motion at the outer edge of the boun-
dary layer is expressed below.

A (Unit:em) D

i

Fig. 1. Finite element mesh for computation region.
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where u, is the velocity at the outer edge of the
boundary layer. in eq.(25) and in eq.(27) are smal-
ler than other terms, therefore they are neglected.
For laminar flow, the shear stress is defined as

T du
—=y (28)
pdy

Combining eqs.(25) and(27), we have

du _ du + J%u

at ot oy (29)

The velocity distribution at the bottom boundary

taking y= —h by the theory of the small ampli-
tude wave is
oH

= e - 30

u, Seinh kb cos(kx —ot) (30)

With the above equation, the solution to eq.(29)
is

= ——,EPL— {cos(kx-ot) — exp~Pcos(kx — ot + By)}
2sinh kh
(31
where B= g and o= . k is the wave nu-

mber, is the w‘a,we height, and h is the water de-
pth. The stream function v, is obtained by integ-
rating the eq.(31)

yL= f ' u(y)dy

= o “Brcos(kx—ot
2smh i f {cos(kx — ot) —exp~Pcos(kx —

+By)ldy

exp P
k t)y+
Lcos(kx—ot)y 5 B

- _oH
2sinh kh
{cos(kx — ot + By) — sin(kx — ot + By)}

- ;E{cos(kx ot)—sin(kx—ot)}] 32)
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While the vorticity wy is obtained by differen-
tiation eq.(31) with repect to y

— _ du@y)
L dy
0 ch
= | —_—_—— — — —By
ay[ ST kh {cos(kx — ot) — exp ™~ #cos(kx
—ot+By)}]
= By, +By——
\/— ZSlnh P —— {exp Pcos(kx— ot + By )}
(33)
Table 1. Details of the boundary conditions
Boundary condition Side Upper | Bottom
Stream function y v L 0
Vortivity w Wy wL wp

Using the Taylor expansion of y for the bottom
boundary B-C, Briley equation is introduced as

_ — 85yt 108y, — 274y, + dy;
Wb 18Ay* G

where yg is the value at the bottom boundary,
and and is the value of nodal point corresponding
to increment Ay. With the eqs.(32), (33) and(34)
the boundary conditions are taken as shown in
Table 1. Where y and w, are the values compu-
ted by the theory of the linear laminar flow except
that vy isn’t alloted on the upper boundary in
the case of oscillatory flow. There exists vorticity
wg on the bottom for the sake of non-slip condi-
tions.

3. Numerical results and discussions

3.1 Computational examples

In the analysis of the sea-bed model, sinusoidal
sand-ripples and unsymmetrical sand-ripples have
been considered as shown in Fig.2. Computations
were carried out for the cases of the oscillatory
flow employing a sinusoidal wave with mean flow,
and the wave motion based on the small ampli-
tude wave theory as shown in Table 2. As mentio-
ned previously, because the boundary conditions

—271—



Table 2. Details of the numerical computations.

Case Sand-rippled Mean flow Period Depth Height Velocity amplitude
No. bed condition sed cm cm cm/sec
1 symmetry wave motion 14 25 8.5 -
2 symmetry oscillatory flow 14 - 20.7
3 unsymmetry wave motion 14 25 8.0 -
4 unsymmetry oscillatory flow 14 e 20.7
L 12.0 q of the laminar flow is introdued, actually the ob-
r 4 ject of investigation in the analytical domain is
T T ~ limited to the horizontal 32 elements each of 1
j{” ™~ cm length and vertical 17 elements; 10 elements
v T ' T 1 1 T each of 0.5 cm and of 7 elements each of 1 cm
length. The incremental time interval is taken to
(@) sinusoidal sand-rippled bed be ,risec per period. We assume that the velocity
is considered positive in the direction of the posi-
L 18 N 7.2 N tive x-axis and that the wave is propagating from
! ! 1 left to right.
’T\\\ ) /’// T As initial conditions, we assume that the values
2.0 ~ -

(unit Cm)

T T T

(b) unsymmetrical sand-rippled bed

Fig. 2. The profiles of sand-rippled beds.
B
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obtained by the theory of linear laminar flow are
used for all nodal points. Fig.3 illustrates the com-
parison of the phase change of mean velocity field
between the calculations. and the experiments
measured by Hamamoto et al™ for a sinusoidal

§

F o« v 4 4 4 A4 4 4 & & 4 4

Y 31;:212::13:‘;3
2R RR Rl

I L,
160" N 8

0-'60 3 40cmys

(b) computational values

Fig. 3. Phase change of mean velocity field.
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oscillatory flow on the symmetrical sand-ripples.
These computation conditions are the same as
those of experiments by Hamamoto et al® The
mean velocity at the initial phase is decided to
be zero at a turning point of time moving from
negative zone to positive zone. It seems that the
shape of mean velocity vector is well reproduced
although its vector differs in size.

3.2 Numerical results

Fig. 4 shows the change of velocity vector vary-
ing in time and space during one period, which
is computed for the cases of the wave motion and
the oscillatory flow with mean flow for the unsy-
mmetrical sand-ripples. Moreover Fig. 4 (a) shows
the fluctuation of the surface wave profiles by clo-
sed circles and the still water level by dashed
lines at each phase. For the case of oscillatory
flow as shown in Fig. 4 (b), a clockwise rotational
vorticity start to develop at the steep slope of the
closest phase from the phase (0.2T) where the
mean flow velocity becomes just before the maxi-
mum, and vorticity shows the tendency of growth
with the decrease of velocity and is inclined to
move slightly upwards (0.2T~04T). This dissipa-
tion of the vortex disappeare when reaching the
phase where the velocity direction is reversed.
When the velocity increase in the reverse direc-
tion, the vortex is formed in an anticlockwise ro-
tational motion in the vicinity of the central part
of gentle slope (0.7T). As the velocity decreases,
the vortex undergoes the process of growth and
disappearence. Meanwhile, for the case of wave
motion as shown in Fig, 4(a), if attention is given
to the trough part of central sand-ripples, the pha-
ses display almost the same change as in the osci-
llatory flow. However, the vortex develops at the
phase where the velocity moving towards the on-
shore starts decreasing after the wave crest is
passed, collides with the vertical velocity and assi-
milates the velocity moving towards the offshore
in which the vortex is not dissipated enough up-
wards(0.3T~0.5T). Also the vortex formed antic-
lockwise at the gentle slope is grown in proportion
to the decrease in the velocity moving in the off-
shore direction, is further dissipated upwards with

#13E 2919934 5 8

the vertical stream lines of the mean flow and
is absorbed the stream line moving towards the
offshore direction in the upper zone (0.8T~0.1T).
Therefore the governing factor that may be defi-
ned the transport of the suspended sand rolling
up by vortex at the sea-bed can be well unders-
tood from the vortex process in the wave motion.

Fig. 5 shows the distribution of horizontal velo-
city on a vertical section on the unsymmetrical
sand-ripples. On the section near the central part
of gentle slope, the horizontal velocity goes to the
maximum value when the velocity changes direc-
tion from right to left. The velocity gradient near
the sea-bed becomes maximum at the point where
the velocity changes direction from left to right
and at that time the biggest shear stress would
be acting at that point. The mean flow condition
hasn’t shown a big difference in the horizontal
velocity between the oscillatory flow and the wave
motion as shown in Figh.

Fig.6 shows the loci of water particles during
one cycle of motion on the trough section of unsy-
mmetrical sand-ripples using Lagrangian descrip-
tion as denoted by open circles. Since the initial
phase of pursuit differ, there is no comparison
between case 3 (wave motion) and case 4 (oscilla-
tory flow) in the same mean flow condition. Ho-
wever, for the case of wave motion as shown in
Fig. 6 (a), water particles move in the potential
elliptical motion. After one cycle of motion the
loci is transported towards the onshore. Water pa-
rticles are moved towards the offshore by the clo-
ckwise rotational vortex formed at the coastal
slope of sea-bed and are transported towards the
onshore with vortex dissipated upwards direction
when the phase is reversed. On the other side,
for the case of oscillatory flow as shown in Fig.6
(b), water particles in the upper layers move hori-
zontally back and forth. At the lower layers the
water particles move into the gentle slope by the
velocity oriented to the left. Some water particles
are transported to the right on a large scale by
the anticlockwise rotational vortex, because this
vortex disappear when the mean flow is reversed
other water particles are, on the average, transpo-
rted into the gentle slope, where they can not
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Fig. 5. The horizontal velocity distributions.
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Fig. 6. The locus of water particles.
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Fig. 7. The transport of water particles.
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(d) oscillatory flow (case 4)

Fig. 8. The velocity fields of steady flow.

return back to the initial phase.

Fig.7 shows the calculated positions of water
particles after one period which start at 6=0 from
nodal points in the analytical domain encircled
by broken lines. The transport of each water par-
ticle is calculated with Lagrangian description as
mentioned in Fig6. For the case of mean flow
due to wave motion, water particles are transpor-
ted to the onshore, while for the case of mean
flow due to oscillatory flow, the water particles
in the sea-beds are transported into gentle slope,
which shows the same tendency with the result
obtained by Sato et al.”® using the finite difference
method. This tendency of the transport of water
particles, for instance similar results are obtained
in case 1 and 2 for symmetrical sand-ripples, rep-
resents one of the characteristic features by disa-

-2

greement in the mean flow conditions. It is neces-
sary to investigate various cases since the trans-
port of water particles depends on the mean flow
amplitude, the mean flow wave profiles, the sand-
ripples length and the mean flow velocity etc.

Fig. 8 shows the velocity fields of steady flow
obtained from the mean velocity during one pe-
riod at each point. For oscillatory ﬂow,'a couple
of vorticity is seen nearly symmetrical without re-
gard to the sand-ripples shape. On the other hand,
for wave motion, the steady vorticity exists at the
coastal slope and the strong current is seen to
run-up the ocean slope. In the results obtained
by the numerical computation, it seems that the
present solution agrees qualitatively well with the
former research and shows the real discharge-du-
ration profiles in the flow fields.
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4. Conclusions

Numerical model was presented to calculate the
turbulent boundary layer flow as well as laminar
boundary layer flow over rippled beds by using
the mixing length theory. The validity of the mo-
del was confirmed by comparing the mean velocity
field and the transport of water particles. Also,
these results obviously display the flow pattern
at the interior boundary layer with arbitrary mean
flow conditions on the arbitrary sea-beds and
clearly show the difference of some characteristics
between the oscillatory flow layer and the wave
motion layer, which haven’t been treated in the
former research. The examples given herein turn
out that the turbulent flow in boundary layer plays
important role in the formation and the transport
of suspended sand clouds. However, further works
are expected on the improvement of the descrip-
tion of the boundary conditions and on the quan-
titative analysis of the transport of the suspended
sediment. All computations have been carried out
on a FACOM M-780 computer at Kyushu Univer-
sity, Japan.
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