• Title/Summary/Keyword: boron effect

Search Result 390, Processing Time 0.025 seconds

Effect of Boron Additions on Glass Formation and Magnetic Properties of Fe-Co-Ti-Zr-B Amorphous Ribbons

  • Kim, Sumin;Han, Bo Kyeong;Choi-Yim, Haein
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.164-167
    • /
    • 2016
  • The effect of the B additions on glass formation and magnetic properties is reported for the $Fe_{(87-x-y)}Co_yTi_7Zr_6B_x$ (x = 2, 4, 6 and y = 35, 40) alloy system. The ribbon samples with the width of 2 mm for each composition were prepared by the melt spinning technique; furthermore, their phase information was obtained from X-ray diffraction. Glass formation and magnetic properties were measured using differential scanning calorimetry and vibrating sample magnetometer respectively. The $Fe_{45}Co_{40}Ti_7Zr_6B_2$ (x = 2 and y = 40) system has the nanocrystalline phase identified as ${\alpha}-Fe$, as well as the amorphous phase, whereas all other alloys are fully amorphous. It is associated with the role of B on the glass formation. The widest supercooled liquid region is obtained as 71 K at x = 4 (both y = 35 and 40). The saturation magnetization decreases with the increase of the amount of the B addition, and the highest value is 1.59 T as x = 2 and y = 35 for this alloy system.

Effect of the Heat treatment and Boron on the Hot Corrosion Resistance of the Al Diffusion Coating (Al 확산피복층의 고온 내식성에 미치는 후열처리와 B첨가의 영향)

  • 김태원;윤재홍;이재현;김현수;변응선
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.67-77
    • /
    • 1999
  • The Ni base superalloy Mar-M247 substrate was aluminized or aluminized after boronizing by the pack cementation under Ar atmosphere. The hot corrosion resistance and after-heat-treatment effect of aluminized specimens were studied by the cyclic hot corrosion test in $Na_2SO_4$-NaCl molten salt. XRD analysis showed that the $Ni_2Al_3$ phase was formed between the coated layer and substrate below 1273K but the NiAl phase above 1273K. The peak of the NiAl phase was developed after heat treatment. Corrosion test showed that corrosion resistance of the specimen with the NiAl phase was better than that with the $Ni_2Al_3$ phase. Corrosion resistance could be improved by heat treatment to form ductile NiAl phase, where cracks were not formed by thermal shock on coating layer. Moreover, it appeared that heat treatment played a role to improve corrosion resistance of Al diffusion coating above 1273K. The existence of boron in the Al diffusion coating layer obstructed outwared diffusion of Cr from the substrate, and it influenced on corrosion resistance of the coating layer by weakening adherence of the oxide scale.

  • PDF

Fabrication of Reverse Osmosis Membrane with Enhanced Boron Rejection Using Surface Modification (표면개질을 이용하여 붕소 제거율이 향상된 역삼투막의 제조)

  • Lee, Deok-Ro;Kim, Jong Hak;Kwon, Sei;Lee, Hye-Jin;Kim, In-Chul
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.96-104
    • /
    • 2018
  • With the rapid increase in seawater desalination, the importance of boron rejection is rising. This study was conducted to investigate the effect of hydrophilic compounds on surface modification to maximize water flux and increase boron rejection. First, polyamide active layer was fabricated by interfacial polymerization of polysulfone ultrafiltration membrane with M-phenylenediamine (MPD) and trimesoyl chloride (TMC) to obtain Control polyamide membrane. Next, D-gluconic acid (DGCA) and D-gluconic acid sodium salt (DGCA-Na) were synthesized with glutaraldehyde (GA) and hydrochloric acid (HCl) by modifying the surface of Control polyamide membrane. XPS analysis was carried out for the surface analysis of the synthesized membrane, and it was confirmed that the reaction of surface with DGCA and DGCA-Na compounds was performed. Also, FE-SEM and AFM analysis were performed for morphology measurement, and polyamide active layer formation and surface roughness were confirmed. In the case of water flux, the membrane fabricated by the surface modification had a value of 10 GFD or less. However, the boron rejection of the membranes synthesized with DGCA and DGCA-Na compounds were 94.38% and 94.64%, respectively, which were 12.03 %p and 12.29 %p larger than the Control polyamide membrane, respectively.

Disinfaction effect of bacteria with ozone generation by BDD electrode (붕소가 도핑된 다이아몬드 전극을 이용한 오존발생과 발생된 오존에 의한 미생물 살균 효과)

  • Yoo, Ji-Young;In, Jin-Kyoung;Einaga, Y.;Fujishima, A.;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.607-610
    • /
    • 2003
  • Ozonic use of sterilization and heat treatment of raw material to extend the conservation period of food recently is increased by hard vegetable or microorganism sterilization purpose of fruit. If ozone can create as is easy comparatively because do air or oxygen by raw material and schedule period passes, there is advantage that do not leave the second contaminant because being gotten restored by oxygen. Also, because the effect is big to decolorization beside disinfection effect about microorganism, deodorization, disjointing of venomousness hazardous substance, food save, Indoor air purge, good hand processing, hydrospace agricultural chemicals processing etc. the use extent is wide. This research ran parallel a sterilization experiment of E.coli colitis germs by ozone that manufacture ozonizer that use doped diamond maund electrode (BDD) by boron and searched special quality electrochemistry enemy of the ozonizer and is created. After cultivate E.coli colitis germs during 37C 1 day is LB ship, after do ozonation, was sterilized more than 90% by ozone as result that examine disinfection effect by substance microscope and could confirm excellency of diamond electrode.

  • PDF

Combustion Characteristics of Cypress Specimens Painted with Solutions of Boron Compounds (붕소 화합물로 처리된 편백나무 시험편의 연소특성)

  • Chung, Yeong-Jin;Jin, Eui
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.1-6
    • /
    • 2018
  • The combustion characteristics of cypress wood coated with boric acid (BA) and ammonium pentaborate (APB) were examined using a cone calorimeter according to the ISO 5660-1 standard. As a result, the combined specimens of boric acid and ammonium pentaborate (BA/APB) led to an improved fire performance index due to their synergistic effect. In addition, the total heat release values of the specimen coated with the boron compounds were 6.1~14.1% lower than that of the base specimen. The total smoke release rate (TSR) of the specimens coated with the boron compound decreased throughout the combustion process, except for BA/APB. The maximum concentration of carbon monoxide was reduced by 15.8~25.5%. In general, wood treated with flame retardants has a lower fire hazard.

Application and evaluation of boron nitride-assisted liquid silicon infiltration for preparing Cf/SiC composites

  • Kim, Jin-Hoon;Jeong, Eui-Gyung;Kim, Se-Young;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.116-119
    • /
    • 2011
  • C/SiC composites were prepared by boron nitride (BN)-assisted liquid silicon infiltration (LSI), and their anti-oxidation and mechanical properties were investigated. The microstructures, bulk densities, and porosities of the C/SiC composites demonstrated that the infiltration of liquid silicon into the composites improved them, because the layered-structure BN worked as a lubricant. Increasing the amount of BN improved the anti-oxidation of the prepared C/SiC composites. This synergistic effect was induced by the assistance of BN in the LSI. More thermally stable SiC was formed in the composite, and fewer pores were formed in the composite, which reduced inward oxygen diffusion. The mechanical strength of the composite increased up to the addition of 3% BN and decreased thereafter due to increased brittleness from the presence of more SiC in the composite. Based on the anti-oxidation and mechanical properties of the prepared composites, we concluded that improved anti-oxidation of C/SiC composites can be achieved through BN-assisted LSI, although there may be some degradation of the mechanical properties. The desired anti-oxidation and mechanical properties of the composite can be achieved by optimizing the BN-assisted LSI conditions.

Material Properties of Ni-P-B Electrodeposits for Steam Generator Tube Repair

  • Kim, Dong Jin;Seo, Moo Hong;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.112-117
    • /
    • 2004
  • This work investigated the material properties of Ni-P-B alloy electrodeposits obtained from a Ni sulfamate bath as a function of the contents of the P and B sources($H_3PO_3$ and dimethyl amine borane complex(DMAB), respectively) with/without additives. Chemical composition, residual stress, microstructure and micro hardness were investigated using ICP(inductively coupled plasma) mass spectrometer, flexible strip, XRD, TEM and micro Vickers hardness tester, respectively. From the results of the compositional analysis, it was observed that P and B are incorporated competitively during the electrodeposition and the sulfur from the additive is codeposited into the electrodeposit. The measured residual stress value increased in the order of Ni, Ni-P, Ni-B and Ni-P-B electrodeposits indicating that boron affects the residual tensile stress greater than phosphorus. As the contents of the alloying element sources of P and B increased, crystallinity and the grain size of the electrodeposit decreased. The effect of boron on crystallinity and grain size was also relatively larger than the phosphorus. It can be explained that the boron with a smaller atomic radius contributes to the increase of residual stress in the tensile direction and the larger restraining force against the grain growth more significantly than the phosphorus with a larger atomic radius. Introduction of an additive into the bath retarded crystallization and grain growth, which may be attributed to the change of the grain growth kinetics induced by the additive adsorbed on the substrate and electrodeposit surfaces during electrodeposition.

Fabrication and Characteristics of $P^+N$ and $P^+NN^+$ Junction Silicon Solar Cell ($P^+N, P^+NN^+$ 접합형 실리콘 태양전지의 제작 및 특성)

  • Lee, Dae-U;Lee, Jong-Deok;Kim, Gi-Won
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.20 no.1
    • /
    • pp.22-26
    • /
    • 1983
  • P+N and P+NN+ solar cells with the area of 3.36 $\textrm{cm}^2$ were fabricated by thermal diffusion. Under the light intensity of 100 mW/$\textrm{cm}^2$, total area(active area) conversion efficiency was 13.4%(14.7%) for P+N cell fabricated by 15 min boron predeposition at 94$0^{\circ}C$ and 20 min annealing at 80$0^{\circ}C$, and 14.3%(15.6%) for P+NN+ cell processed by 15 min boron predeposition at 94$0^{\circ}C$ and 50 min annealing at 80$0^{\circ}C$ after 20 min back phosphorus diffusion at 1,05$0^{\circ}C$. The minority carrier lifetime in bulk of P+NN+ cells was increased about 2~3 times comparing with P+N cells because of guttering and BSF effect due to back phosphorus doping. The methods used for efficiency improvement were AR coating, Ag electroplating, back doping and fine grid pattern as well as the control of front doping profile.

  • PDF

First-principles Study of Graphene/Hexagonal Boron Nitride Stacked Layer with Intercalated Atoms

  • Sung, Dongchul;Kim, Gunn;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.185.2-185.2
    • /
    • 2014
  • We have studied the atomic and electronic structure of graphene nanoribbons (GNRs) on a hexagonal boron nitride (h-BN) sheet with intercalated atoms using first-principles calculations. The h-BN sheet is an insulator with the band gap about 6 eV and then it may a good candidate as a supporting dielectric substrate for graphene-based nanodevices. Especially, the h-BN sheet has the similar bond structure as graphene with a slightly longer lattice constant. For the computation, we use the Vienna ab initio simulation package (VASP). The generalized gradient approximation (GGA) in the form of the PBE-type parameterization is employed. The ions are described via the projector augmented wave potentials, and the cutoff energy for the plane-wave basis is set to 400 eV. To include weak van der Waals (vdW) interactions, we adopt the Grimme's DFT-D2 vdW correction based on a semi-empirical GGA-type theory. Our calculations reveal that the localized states appear at the zigzag edge of the GNR on the h-BN sheet due to the flat band of the zigzag edge at the Fermi level and the localized states rapidly decay into the bulk. The open-edged graphene with a large corrugation allows some space between graphene and h-BN sheet. Therefore, atoms or molecules can be intercalated between them. We have considered various types of atoms for intercalation. The atoms are initially placed at the edge of the GNR or inserted in between GNR and h-BN sheet to find the effect of intercalated atoms on the atomic and electronic structure of graphene. We find that the impurity atoms at the edge of GNR are more stable than in between GNR and h-BN sheet for all cases considered. The nickel atom has the lowest energy difference of ~0.2 eV, which means that it is relatively easy to intercalate the Ni atom in this structure. Finally, the magnetic properties of intercalated atoms between GNR and h-BN sheet are investigated.

  • PDF