Browse > Article
http://dx.doi.org/10.4283/JMAG.2016.21.2.164

Effect of Boron Additions on Glass Formation and Magnetic Properties of Fe-Co-Ti-Zr-B Amorphous Ribbons  

Kim, Sumin (Department of Physics, Sookmyung Women's University)
Han, Bo Kyeong (Department of Physics, Sookmyung Women's University)
Choi-Yim, Haein (Department of Physics, Sookmyung Women's University)
Publication Information
Abstract
The effect of the B additions on glass formation and magnetic properties is reported for the $Fe_{(87-x-y)}Co_yTi_7Zr_6B_x$ (x = 2, 4, 6 and y = 35, 40) alloy system. The ribbon samples with the width of 2 mm for each composition were prepared by the melt spinning technique; furthermore, their phase information was obtained from X-ray diffraction. Glass formation and magnetic properties were measured using differential scanning calorimetry and vibrating sample magnetometer respectively. The $Fe_{45}Co_{40}Ti_7Zr_6B_2$ (x = 2 and y = 40) system has the nanocrystalline phase identified as ${\alpha}-Fe$, as well as the amorphous phase, whereas all other alloys are fully amorphous. It is associated with the role of B on the glass formation. The widest supercooled liquid region is obtained as 71 K at x = 4 (both y = 35 and 40). The saturation magnetization decreases with the increase of the amount of the B addition, and the highest value is 1.59 T as x = 2 and y = 35 for this alloy system.
Keywords
Fe-based; amorphous; ribbon; boron addition;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Duwez and S. C. H. Lin, J. Appl. Phys. 38, 4096 (1967).   DOI
2 J. Durand, IEEE Trans. Magn. 12, 945 (1976).   DOI
3 C. Suryanarayana and A. Inoue, Int. Mater. Rev. 58, 131 (2013).   DOI
4 M. Mitera, T. Masumoto, and N. S. Kazama, J. Appl. Phys. 50, 7609 (1979).   DOI
5 A. Inoue, B. L. Shen, and C. T. Chang, Acta Mater. 52, 4093 (2004).   DOI
6 B. L. Shen, A. Inoue, and C. T. Chang, Appl. Phys. Lett. 85, 4911 (2004).   DOI
7 S. J. Pang, T. Zhang, K. Asami, and A. Inoue, Acta Mater. 50, 489 (2002).   DOI
8 W. H. Wang, Prog. Mater Sci. 52, 540 (2007).   DOI
9 Z. B. Zhao, H. Li, J. Gao, Y. Wu, and Z. P. Lu, Intermetallics 19, 1502 (2011).   DOI
10 M. Mitera, M. Naka, T. Masumoto, N. Kazama, and K. Watanabe, Phys. Stat. Sol. (a) 49, 163 (1978).   DOI
11 A. Makino, T. Kubota, and C. T. Chang, Mater. Trans. JIM 48, 3024 (2007).   DOI
12 J. H. Zhang, C. T. Chang, A. D. Wang, and B. L. Shen, J. Non-Cryst. Solids 358, 1443 (2012).   DOI
13 Z. Q. Liu and Z. F. Zhang, J. Appl. Phys. 114, 243519 (2013).   DOI
14 B. Han, S. Kim, and H. Choi-Yim, J. Nanosci. Nanotechno. 16, 1 (2016).   DOI
15 S. Kim, B. K. Han, D. T. Quach, D-H. Kim, Y. K. Kim, and H. Choi-Yim, Curr. Appl. Phys. 16, 515 (2016).   DOI
16 M. P. Klug and L. F. Alexanader, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York (1974) pp. 634.
17 Y. Takahara and N. Narita, Mater. Trans. JIM 41, 1077 (2000).   DOI
18 R. Onodera, S. Kimura, K. Watanabe, Y. Yokoyama, A. Makino, and K. Koyama, J. Alloy. Compd. 637, 213 (2015).   DOI
19 A. Inoue, T. Zhang, and T. Masumoto, J. Non.-Cryst. Solids 156-158, 437 (1993).   DOI
20 T. D. Shen and R. B. Schwarz, Appl. Phys. Lett. 75, 49 (1999).   DOI
21 B. Yao, Y. Zhang, L. Si, H. Tan, and Y. Li, J. Alloy. Comp. 370, 1 (2004).   DOI