DOI QR코드

DOI QR Code

Effect of Boron Additions on Glass Formation and Magnetic Properties of Fe-Co-Ti-Zr-B Amorphous Ribbons

  • Kim, Sumin (Department of Physics, Sookmyung Women's University) ;
  • Han, Bo Kyeong (Department of Physics, Sookmyung Women's University) ;
  • Choi-Yim, Haein (Department of Physics, Sookmyung Women's University)
  • Received : 2016.05.02
  • Accepted : 2016.05.12
  • Published : 2016.06.30

Abstract

The effect of the B additions on glass formation and magnetic properties is reported for the $Fe_{(87-x-y)}Co_yTi_7Zr_6B_x$ (x = 2, 4, 6 and y = 35, 40) alloy system. The ribbon samples with the width of 2 mm for each composition were prepared by the melt spinning technique; furthermore, their phase information was obtained from X-ray diffraction. Glass formation and magnetic properties were measured using differential scanning calorimetry and vibrating sample magnetometer respectively. The $Fe_{45}Co_{40}Ti_7Zr_6B_2$ (x = 2 and y = 40) system has the nanocrystalline phase identified as ${\alpha}-Fe$, as well as the amorphous phase, whereas all other alloys are fully amorphous. It is associated with the role of B on the glass formation. The widest supercooled liquid region is obtained as 71 K at x = 4 (both y = 35 and 40). The saturation magnetization decreases with the increase of the amount of the B addition, and the highest value is 1.59 T as x = 2 and y = 35 for this alloy system.

Keywords

References

  1. P. Duwez and S. C. H. Lin, J. Appl. Phys. 38, 4096 (1967). https://doi.org/10.1063/1.1709084
  2. J. Durand, IEEE Trans. Magn. 12, 945 (1976). https://doi.org/10.1109/TMAG.1976.1059135
  3. C. Suryanarayana and A. Inoue, Int. Mater. Rev. 58, 131 (2013). https://doi.org/10.1179/1743280412Y.0000000007
  4. M. Mitera, T. Masumoto, and N. S. Kazama, J. Appl. Phys. 50, 7609 (1979). https://doi.org/10.1063/1.326860
  5. A. Inoue, B. L. Shen, and C. T. Chang, Acta Mater. 52, 4093 (2004). https://doi.org/10.1016/j.actamat.2004.05.022
  6. B. L. Shen, A. Inoue, and C. T. Chang, Appl. Phys. Lett. 85, 4911 (2004). https://doi.org/10.1063/1.1827349
  7. S. J. Pang, T. Zhang, K. Asami, and A. Inoue, Acta Mater. 50, 489 (2002). https://doi.org/10.1016/S1359-6454(01)00366-4
  8. W. H. Wang, Prog. Mater Sci. 52, 540 (2007). https://doi.org/10.1016/j.pmatsci.2006.07.003
  9. Z. B. Zhao, H. Li, J. Gao, Y. Wu, and Z. P. Lu, Intermetallics 19, 1502 (2011). https://doi.org/10.1016/j.intermet.2011.05.020
  10. M. Mitera, M. Naka, T. Masumoto, N. Kazama, and K. Watanabe, Phys. Stat. Sol. (a) 49, 163 (1978). https://doi.org/10.1002/pssa.2210490120
  11. A. Makino, T. Kubota, and C. T. Chang, Mater. Trans. JIM 48, 3024 (2007). https://doi.org/10.2320/matertrans.MRP2007198
  12. J. H. Zhang, C. T. Chang, A. D. Wang, and B. L. Shen, J. Non-Cryst. Solids 358, 1443 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.03.023
  13. Z. Q. Liu and Z. F. Zhang, J. Appl. Phys. 114, 243519 (2013). https://doi.org/10.1063/1.4858380
  14. B. Han, S. Kim, and H. Choi-Yim, J. Nanosci. Nanotechno. 16, 1 (2016). https://doi.org/10.1166/jnn.2016.11124
  15. S. Kim, B. K. Han, D. T. Quach, D-H. Kim, Y. K. Kim, and H. Choi-Yim, Curr. Appl. Phys. 16, 515 (2016). https://doi.org/10.1016/j.cap.2016.02.005
  16. M. P. Klug and L. F. Alexanader, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York (1974) pp. 634.
  17. Y. Takahara and N. Narita, Mater. Trans. JIM 41, 1077 (2000). https://doi.org/10.2320/matertrans1989.41.1077
  18. R. Onodera, S. Kimura, K. Watanabe, Y. Yokoyama, A. Makino, and K. Koyama, J. Alloy. Compd. 637, 213 (2015). https://doi.org/10.1016/j.jallcom.2015.02.197
  19. A. Inoue, T. Zhang, and T. Masumoto, J. Non.-Cryst. Solids 156-158, 437 (1993). https://doi.org/10.1016/0022-3093(93)90214-I
  20. T. D. Shen and R. B. Schwarz, Appl. Phys. Lett. 75, 49 (1999). https://doi.org/10.1063/1.124273
  21. B. Yao, Y. Zhang, L. Si, H. Tan, and Y. Li, J. Alloy. Comp. 370, 1 (2004). https://doi.org/10.1016/j.jallcom.2003.08.096