• 제목/요약/키워드: boride

검색결과 68건 처리시간 0.045초

Formation of Ti-B-N-C Ceramic Composite Materials via a Gas-Solid Phase Reaction

  • Yoon, Su-Jong
    • 한국재료학회지
    • /
    • 제16권1호
    • /
    • pp.50-57
    • /
    • 2006
  • Phase mixtures of Titanium boride, nitride, and carbide powder were produced by the reduction of a mixture of titanium and boron oxides with carbon via a gas-solid phase reaction. Boron oxides produce a vapour phase or decompose to a metal sub-oxide gaseous species when reduced at elevated temperature. The mechanism of BO sub-oxide gas formation from $B_2O_3$ and its subsequent reduction to titanium diboride for the production of uniform size hexagonal platelets is explained. These gaseous phases are critical for the formation of boride, nitride and carbide ceramics. For the production of ceramic phase composite microstructures, the nitrogen partial pressure was the most critical factor. Some calculated equilibrium phase fields has been verified experimentally. The theoretical approach therefore identifies conditions for the formation of phase mixtures. The thermodynamic and kinetic factors that govern the phase constituents are also discussed.

BCl3-H2-Ar 분위기를 이용한 2단계 플라즈마 보로나이징 특성 (Characteristics of Two-Step Plasma-Assisted Boronizing Process in an Atmosphere of BCl3-H2-Ar)

  • 남기석;이구현;신평우;송요승;김배연;이득용
    • 한국세라믹학회지
    • /
    • 제43권6호
    • /
    • pp.358-361
    • /
    • 2006
  • A two-step plasma-assisted boronizing process was carried out on the AISI 1045 steel substrate to reduce the pore density introduced by a conventional single plasma boronizing process. The specimens were plasma boronized for 1 h at $650^{\circ}C$ and subsequently far 7 h at $800^{\circ}C$ in an atmosphere of $BCl_3-H_2-Ar$. The boride layer thickness was parabolic in boronizing time, a high HV reading of 1540 was found up to the boride layer thickness of $25{\mu}m$. It was found that the morphology of the boride layer prepared by the two-step boronizing process was changed from a columnar to a tooth-like structure and the pores in the borided steel were eliminated completely in comparison to those synthesized by the conventional single boronizing process, implying that it is highly applicable for enhancing the dense and compact coating properties of the low-alloy steel.

보로나이징처리에 따른 Inconel 625 초합금강의 기계적 특성 향상 (Effect of Boronizing on Inconel 625 Superalloy for Improving Mechanical Properties)

  • 김대욱;김유성;이인식;차여훈;정경훈;차병철
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.316-320
    • /
    • 2019
  • The effect of boronizing on mechanical properties including wear behavior and hardness of Inconel 625 superalloy were investigated. The cross-section observation demonstrated that boronized samples were composed of multi-phase boride layer (CrxBx, Ni2B), diffusion layer, and substrate. The boride and diffusion layers were increased with increasing treatment temperature and holding time. However, CrxBx layer was partially peeled off when it treated 1000℃. Subsequently, boride layer was completely separated from substrate with increasing temperature and time. A partial peeling of CrxBx layer is not noticeably degraded mechanical properties. In particular, friction coefficient and wear resistance were enhanced in lack of CrxBx phase. Therefore, these results suggest that a Ni2B phase mainly contribute to wear behavior on boronized Inconel 625 superalloy.

Ti glue layer, Boron dopant, N2plasma 처리들이 Cu와 low-k 접착력에 미치는 효과 (Adhesion Property of Cu on Low-k : Ti Glue Layer, Boron Dopant, N2plasma effects)

  • 이섭;이재갑
    • 한국재료학회지
    • /
    • 제13권5호
    • /
    • pp.338-342
    • /
    • 2003
  • Adhesion between Cu and low-k films has been investigated. Low-k films deposited using a mixture of hexamethyldisilane(HMDS) and Para-xylene had a dielectric constant as low as 2.7, showing the thermally stable properties up to $400^{\circ}C$. In this study, Ti glue layer, boron dopant, and $N_2$plasma treatment were used to improve adhesion property of between Cu and low-k films. Ti glue layer slightly improved adhesion property. After $N_2$plasma treatment, the adhesion property was significantly improved due to the increased roughness and the formation of new binding states between Ti and plasma-treated PPpX : HMDS. However, $300^{\circ}C$ annealing of $N_2$plasma treated sample caused the diffusion of Cu into the PPpX : HMDS, degrading the low-k properties. In the case of Cu(B)/Ti/PPpX : HMDS, the adhesion was remarkably increased. This enhanced adhesion was attributed to formation of Ti-boride at the Cu-Ti interface. It is because the formed Ti-boride prevented the diffusion of Cu into the PPpX : HMDS and the Cu-Ti reaction at the Ti interface.