• Title/Summary/Keyword: boom design

Search Result 136, Processing Time 0.024 seconds

Minimum Weight Design of the Boom of an Ecavator (굴삭기 붐의 최적 설계)

  • 임오강;신양범;이병우
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.91-98
    • /
    • 1993
  • Minimum weight design of the boom of an excavator with stress and displacement constraints was performed. The procedure of analysis consists of the following steps. The finite element model of the boom was built up by using 227 triangular plate elements each of which has three nodes. And then the finite element program was implemented and its accuracy was verified by comparing its results with those of the commercial structural analysis package-ANSYS 4.4A. For the constraints of stresses and displacements, the design sensitivities of those were computed using direct differentiation method. To verify the reliability of them the results were compared with those of the finite difference method. The optimum design value was obtained by using PLBA(Pshenichny-Lim-Belegundu-Arora)non-linear optimization program which adopts the active set strategy. Using the above results, minimum weight design of an excavator boom showed an effect of 27% reduction in weight.

  • PDF

A Study on the Optimal Design for Aluminum Boom Shape in High Ladder Vehicles (고가사다리차의 알루미늄 붐 형상의 최적설계에 관한 연구)

  • Kim, Hong-Gun;Nah, Seok-Chan;Hong, Dong-Pyo;Cho, Nam-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.96-102
    • /
    • 2007
  • An Optimal shape design of the boom system in high ladder vehicles is performed using 3-D finite element method (FEM). Results of structural analyses providing displacements, stresses are implemented for the optimum shape design. Lanzcos algorithm is used for the modal analysis in order to find natural frequencies. The optimal shape including cross sectional thickness and length of the boom system is controlled by the subproblem method besed on displacement and Von Mises stress. It is found that a plenty of materials can be saved by using shape design optimization in high ladder vehicles. It is also found that the natural frequency is increased until 6th mode and maintained similarly or decreased after 6th mode.

Lightweight Crane Design by Using Topology and Shape Optimization (위상최적설계와 형상최적설계를 이용한 크레인의 경량설계)

  • Kim, Young-Chul;Hong, Jung-Kie;Jang, Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.821-826
    • /
    • 2011
  • CAE-based structural optimization techniques are applied for the design of a lightweight crane. The boom of the crane is designed by shape optimization with the shape of the cross section of the boom as the design variable. The design objective is mass minimization, and the static strength and dynamic stiffness of the system are set as the design constraints. Hyperworks, a commercial analysis and optimization software, is used for shape and topology optimization. In order to consistently change the shape of the elements of the boom with respect to the change in the shape of its cross section, the morphing function in Hyperworks is used. The support of the boom of the original model is simplified to model the design domain for topology optimization, which is discretized by using three-dimensional solid elements. The final result after shape and topology optimization is 19% and 17% reduction in the masses of the boom and support, respectively, without a deterioration in the system stiffness.

A Study on the optimal design of lattice boom crane for offshore plant (해양플랜트용 라티스 붐 크레인의 최적 설계에 관한 연구)

  • Kim, Hyun-ji;Kim, Ji-hye;Park, Sang-hyeok;Choi, Si-yeon;Huh, Sun-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.757-765
    • /
    • 2019
  • In manufacturing An offshore plant is a structure that produces resources buried in the seabed. It can be classified into fixed, floating, and hybrid methods depending on the installation method. In particular, the Lattice boom type crane is typically used because it is used for a long time in the sea and moves to other seas, which is less affected by wind. In this study, the crane was designed by using three-step optimization design in the early stage of the design of Lattice boom crane for offshore plant. Finite element analysis was performed to verify the safety factor, deflection, buckling coefficient and fatigue life of the designed crane and the results were verified.

Dynamic Analysis of Boom Using Finite Element Method (유한 요소법을 이용한 붐대의 동특성 해석)

  • Han, Su-Hyun;Kim, Byung-Jin;Hong, Dong-Pyo;Tae, Sin-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.987-991
    • /
    • 2005
  • The Aerial platform Truck is widely used for work in high place with the aerial platform. The most important thing is that worker's safety and worker must be able to work with trustworthiness so it needs to be verified its stiffness, deflection of boom, and dynamic condition concerned with a rollover accident. It should have an analytical exactitude because it is directly linked with the worker safety. In this point, we are trying to develop a proper CAE analysis model concerned with a rollover safety, bending stress and deflection for load. The Aerial platform Truck have a dynamic characteristics by load and moving of boom in the work field, so its static and dynamic strength analysis, structural mechanics are very important. Therefore, we evaluate the safety of each boom to calculating its stress, deflection. A computer simulation program is used widely for doing applying calculation of stiffness and structural mechanics, then finally trying to find a optimum design of the Aerial platform Truck.

  • PDF

Compensation of Relation Formula between Luffing Wire Tension and Overturning Moment in a Crawler Crane Considering the Deflection of Boom (크롤러 크레인에서 붐의 처짐을 고려한 러핑와이어 장력과 전도모멘트 사이의 관계식 보정)

  • Jang, Hyo-Pil;Han, Dong-Seop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.44-49
    • /
    • 2011
  • The crawler crane, which consists of a lattice boom, a driving system, and movable vehicle, is widely used in a construction site. It needs to be installed an overload limiter to prevent the overturning accident and the fracture of structure. This research is undertaken to provide the relation formula for designing the overload limiter as follows: First the relation formulas between the wire-rope tension and the hoisting load or the overturning ratio according to the luffing angle and length of a lattice boom are established. Secondly the derived formulas are corrected by using the compensated angle considering the deflection of boom through the finite element analysis. The stiffness analysis is carried out for 30-kinds of models as a combination of 6-kinds of luffing angle and 5-kinds of length of boom. Finally the shape design of a stick type load cell, which is the device to measure the wire-rope tension, is performed. 5-kinds of notch radius and 5-kinds of center hole radius are adopted as the design parameter for the strength analysis of the load cell.

Optimal Shape Design of Excavator Boom Using the Semi-Analytical Method (민감도 근사해석법을 이용한 굴삭기 붐의 최적형상설계)

  • Lim, O-Kaung;Cho, Heon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.301-309
    • /
    • 1995
  • Shape optimal design of an excavator boom to minimize weight can be formulated as a nonlinear programming problem with an automesh refinement carried out by using the finite element method. The design variables are the radii and the coordinates of the circle to describe the excavator boundary shape. In addition to the displacement and stress constraints, geometric constraints are imposed such that the nodes cannot cross the certain range. The optimum design is obtained by using the PLBA nonlinear programming code. The sensitivity derivatives are calculated using the semi-analytical scheme. Numerical results of an excavator boom show potential for weight reduction of 4.4%(65.6 kgf) when considering the displacement, stress and geometric constraints.

A Suggestion of Housing Alternatives for Korean Baby Boom Generation Based on Their Housing Related Consciousness (노후 주거 관련 의식에 기초한 한국 베이비붐 세대의 노후 주거대안 제안)

  • Kwon, Oh-Jung;Lee, Yongmin
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.5
    • /
    • pp.39-50
    • /
    • 2018
  • The purpose of this study was to examine the diverse situations and housing related consciousness affecting baby boom generation's housing and to propose new possible housing alternatives for Korean baby boom generation for their old ages. Surveys were used to conduct 1:1 interviews with the baby boom generation. This study analysed the baby boom generation's housing related consciousness regarding living in old age with/apart from their children, sense of responsibility to their children and parents, expectations of support from their children in old age, current preparedness for old age, reasons for difficulties in realizing plans for housing in old age, and housing values in old age in order to examine this generation's diverse view in relation to preparations for housing in old age. Based on the results of the analysis of variables of housing consciousness in relation to old age by each characteristic of the baby boom generation conducted in investigations of the present study thus explained, housing alternatives in old age were 1)family exchange-type housing in old age 2) multihabitation-type housing in old age 3) housing in old-age with workplaces.

A Study on the Weight-saving Design of the Boom in High Ladder Vehicle (고층 사다리차 붐의 경량화 설계에 관한 연구)

  • Kim, Jin-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.8-13
    • /
    • 2007
  • The purpose of this study is to reduced the weight of ladder boom and to improve the manufactor process by the section modification. The Conventional model consists of integral section stiffener, while the proposed model consists of truss type stiffener to reduce the weight of ladder boom and wind effector. In the two analysis models, one is based on the single boom, and the other is based in the coupling model of two booms. We present the analysis results for the case when applying the weight, bending and twisting moment and wind pressure. Finally, a comparison between these results is presented to show the performance of our method.