• 제목/요약/키워드: bone xenograft

검색결과 70건 처리시간 0.027초

Anorganic bovine bone을 이용한 상악동저 거상술의 조직학적 평가 (Maxillary sinus floor augmentation with anorganic bovine bone : Histologic evaluation in humans)

  • 손우경;신승윤;양승민;계승범
    • Journal of Periodontal and Implant Science
    • /
    • 제39권1호
    • /
    • pp.95-102
    • /
    • 2009
  • Purpose: The aim of this report is to investigate the efficacy of anorganic bovine bone xenograft(Bio-$Oss^{(R)}$) at maxillary sinus floor augmentation. Materials and methods: Two male patients who missed maxillary posterior teeth were included. They were performed maxillary sinus floor augmentation using anorganic bovine bone xenograft(Bio-$Oss^{(R)}$). After 10 or 13 months, the regenerated tissues were harvested using trephine drills with 2 or 4mm diameter and non-decalcified specimens were made. The specimens were examined histologically and histomorphometrically to investigate graft resorption and new bone formation. Results: Newly formed bone was in contact with Bio-$Oss^{(R)}$ particles directly without any gap between the bone and the particles. The proportions of newly formed bone were $23.4{\sim}25.3%$ in patient 1(Pt.1) and 28.8% in patient 2(Pt.2). And the proportions of remained Bio-$Oss^{(R)}$ were $29.7{\sim}30.2%$ in Pt.1 and 29.2% in Pt.2. The fixtures installed at augmented area showed good stability and the augmented bone height was maintained well. Conclusion: Anorganic bovine bone xenograft(Bio-$Oss^{(R)}$) has high osteoconductivity and helps new bone formation, so that it can be used in maxillary sinus floor augmentation.

혈소판 농축혈장이 임플랜트 주위 골결손부 재생에 미치는 영향 (The Effects of Platelet-Rich Plasma on Regeneration around Dental Implant Defects)

  • 홍기석;임성빈;정진형;이종헌
    • Journal of Periodontal and Implant Science
    • /
    • 제33권4호
    • /
    • pp.673-691
    • /
    • 2003
  • The current interest in periodontal tissue regeneration has lead to research in bone graft, root surface treatments, guided-tissue regeneration, and the administration of growth factors as possible means of regenerating lost periodontal tissue. Several studies have shown that a strong correlation between platelet-rich plasma and the stimulation of remodeling and remineralization of grafted bone exists, resulting in a possible increase of 15-30% in the density of bone trabeculae. The purpose of this study was to study the histopathological correlation between the use of platelet-rich plasma and a bone xenograft used in conjunction with a non-resorbable guided-tissue membrane, e-PTFE, compared to a control group with regards to bone regeneration at the implant fixture site. Implant fixtures were inserted and graft materials placed into the left femur of in the experimental group, while the control group received only implant fixtures. In the first experimental group, platelet-rich plasma and BBP xenograft were placed at the implant fixture site, and the second experimental group had platelet-rich plasma, BBP xenograft, and the e-PTFE membrane placed at the fixture site. The degree of bone regeneration adjacent to the implant fixture was observed and compared histopathologically at 2 , 4, and 8 weeks after implant fixture insertion. The results of the experiment are as follows: 1. The rate of osseointegration to the fixture threads was found to be greater in the first experimental group compared to the control group. 2. The histopathological findings of the second experimental group showed rapid resorption of BBP with subsequent new bone formation replacing the resorbed BBP. 3. The second experimental group showed new bone formation in the area adjacent to the fixture threads beginning two weeks after fixture implantation, with continued bone remodeling in the areas mesial and distal to the fixture. 4. Significant new bone formation and bone remodeling was observed in both experimental groups near the implant fixture sites. 5. The rate of osseointegration at the fixture threads was greater in the second experimental group compared to the first group, and the formation of new bone and trabeculae around the fixture site occurred after the fourth week in the second experimental group. The results of the experiment suggest that a greater degree of new bone formation and osseointegration can occur at the implant fixture site by utilizing platelet-rich plasma and bone xenografts, and that these effects can be accelerated and enhanced by concurrent use of a non-resorbable guided tissue membrane.

임상가를 위한 특집 3 - Peri-implantitis의 regeneration therapy 증례 보고 (Use of Bovine-derived bone mineral (Bio-Oss Collagen$^{(R)}$) in surgical treatment of peri-implantitis: A case report)

  • 조영재
    • 대한치과의사협회지
    • /
    • 제51권12호
    • /
    • pp.643-649
    • /
    • 2013
  • The aim of this study was to achieve the healing of peri-implantitis defects and the hard tissue regeneration using the augmentation of a xenograft on defect site. Two patients were treated with the surgical approach. With a full muco-periosteal flap elevation, the implant surfaces were exposed and taken the debridement of granulation tissue around the abutment. Each surface of the abutments was prepared with the air-abrasive device (PerioFlow$^{(R)}$) for decontamination. Bovine-derived bone mineral (Bio-Oss collagen$^{(R)}$) was then used to fill the defects, and no membrane was placed on the grafting site. Radiographs and clinical photo was taken to compare from baseline status. Within the limits of the present case, this case shows the significance of the surgical treatment of peri-implantitis. And this also verifies the stability of bovine-derived bone mineral and effectiveness of Air-abrasive device (PerioFlow$^{(R)}$).

Bovine-derived Xenograft가 치주 골내낭 치유에 미치는 영향 (Periodontal Repair on Intrabony Defects treated with Anorganic Bovine-derived Xeonograft)

  • 김영택;채경준;정의원;이용근;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제37권3호
    • /
    • pp.489-496
    • /
    • 2007
  • The ultimate goal of periodontal treatment is to regenerate the lost periodontal apparatus. Many studies were performed in developing an ideal bone substitute. Anorganic bovine-derived xenograft is one of the bone substitute, which were studied and have been shown successful for decades. The aim of this study is to evaluate the effect anorganic bovine-derived xenograft. Total of 20 patients, with 10 patients receiving only modified widman flap, and the other 10 receiving anorganic bovine-derived xenograft and flap surgery, were included in the study. Clinical parameters were recorded before surgery and after 6 months. The results are as follows: 1. The test group treated with anorganic bovine-derived xenograft showed reduction in periodontal pocket depth and clinical attachment level with statistically significance(p<0.001) after 6 months. The control group treated with only modified Widman flap showed reduction only in periodontal pocket depth with statistically significance(p<0.001) after 6 months. 2. Although periodontal probing depth change during 6 months did not show any significant differences between the test group and the control group, clinical attachment level gain and re-cession change showed significant differences between the two groups(p<0.05). On the basis of these results, anorganic bovine-derived xenograft improves probing depth and clinical attachment level in periodontal intrabony defects. Anorganic bovine-derived xenograft could be a predictable bone substitute in clinical use.

A study of bone regeneration effect according to the two different graft bone materials in the cranial defects of rabbits

  • Song, Hyun-Jong;Kim, Hyun-Woo;Min, Gwi-Hyeon;Lee, Won-Pyo;Yu, Sang-Joun;Kim, Byung-Ock
    • 구강생물연구
    • /
    • 제42권4호
    • /
    • pp.198-207
    • /
    • 2018
  • Guided tissue regeneration (GBR) has been used to promote new bone formation in alveolar bone reconstruction at defective bone sites following tooth loss. Bone grafts used in GBR can be categorized into autogenous, xenogenous, and synthetic bones, and human allografts depending on the origin. The purpose of this study was to compare the rates of bone regeneration using two different bone grafts in the cranial defects of rabbits. Ten New Zealand rabbits were used in this study. Four defects were created in each surgical site. Each defect was filled as follows: with nothing, using a 50% xenograft and 50% human freeze-dried bone allograft (FDBA) depending on the volume rate, human FDBA alone, and xenograft alone. After 4 to 8 weeks of healing, histological and histomorphometric analyses were carried out. At 4 weeks, new bone formation occurred as follows: 18.3% in the control group, 6.5% in group I, 8.8% in group II, and 4.2% in group III. At 8 weeks, the new bone formation was 14.9% in the control group, 36.7% in group I, 39.2% in group II, and 16.8% in group III. The results of this study suggest that the higher the proportion of human FDBA in GBR, the greater was the amount of clinically useful new bone generated. The results confirm the need for adequate healing period to ensure successful GBR with bone grafting.

Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications

  • Lee, Jung Heon;Yi, Gyu Sung;Lee, Jin Woong;Kim, Deug Joong
    • Journal of Periodontal and Implant Science
    • /
    • 제47권6호
    • /
    • pp.388-401
    • /
    • 2017
  • Purpose: The physicochemical properties of a xenograft are very important because they strongly influence the bone regeneration capabilities of the graft material. Even though porcine xenografts have many advantages, only a few porcine xenografts are commercially available, and most of their physicochemical characteristics have yet to be reported. Thus, in this work we aimed to investigate the physicochemical characteristics of a porcine bone grafting material and compare them with those of 2 commercially available bovine xenografts to assess the potential of xenogenic porcine bone graft materials for dental applications. Methods: We used various characterization techniques, such as scanning electron microscopy, the Brunauer-Emmett-Teller adsorption method, atomic force microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and others, to compare the physicochemical properties of xenografts of different origins. Results: The porcine bone grafting material had relatively high porosity (78.4%) and a large average specific surface area (SSA; $69.9m^2/g$), with high surface roughness (10-point average roughness, $4.47{\mu}m$) and sub-100-nm hydroxyapatite crystals on the surface. Moreover, this material presented a significant fraction of sub-100-nm pores, with negligible amounts of residual organic substances. Apart from some minor differences, the overall characteristics of the porcine bone grafting material were very similar to those of one of the bovine bone grafting material. However, many of these morphostructural properties were significantly different from the other bovine bone grafting material, which exhibited relatively smooth surface morphology with a porosity of 62.0% and an average SSA of $0.5m^2/g$. Conclusions: Considering that both bovine bone grafting materials have been successfully used in oral surgery applications in the last few decades, this work shows that the porcinederived grafting material possesses most of the key physiochemical characteristics required for its application as a highly efficient xenograft material for bone replacement.

Effects of fibrin glue on bone formation in combination with deproteinized bone xenografts in humans

  • Kim, Moon-Su;Kim, Su-Gwan;Lim, Sung-Chul;Kim, Hak-Kyun;Moon, Seong-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권1호
    • /
    • pp.19-27
    • /
    • 2008
  • Thirty-six sinus grafts were performed in 34 patients with an alveolar crest bone height in the posterior maxilla of 3 to 5 mm before grafting. The sinuses were grafted using Bio-Oss alone or mixed with fibrin glue. Group 1 was the control group and included 25 patients who received a xenograft mixed in saline. Group 2 comprised 9 patients who received a xenograft and fibrin glue. The study was further subdivided at the time of 9 months. This histologic study evaluated by hematoxylin-eosin (H&E) and histomorphometric analysis whether fibrin glue in combination with Bio-Oss enhances bone regeneration in sinus floor elevation in humans. The new bone formation was better in Group 2 than in Group 1, but the difference was not significant. The absorption of the graft material was faster in Group 2 than in Group 1, in the short term, but better in Group 1 over the long term, although the difference was not significant. Lamellar bone was formed earlier in Group 1 compared to Group 2, but the difference was not significant. Overall, the surgery site stabilized earlier with new bone formation in Group 2 than in Group 1, but the difference was not significant. Combining a fibrin sealant and Bio-Oss could lead to improved scaffolds for bone tissue engineering based on the synergistic effects of the biomaterials. Therefore, Bio-Oss or Bio-Oss plus Tisseel may be used depending on the situation.

Comparative study of two collagen membranes for guided tissue regeneration therapy in periodontal intrabony defects: a randomized clinical trial

  • Chung, Young-Mi;Lee, Jue-Yeon;Jeong, Seong-Nyum
    • Journal of Periodontal and Implant Science
    • /
    • 제44권4호
    • /
    • pp.194-200
    • /
    • 2014
  • Purpose: The purpose of this study was to assess and compare the clinical and radiographic outcomes of guided tissue regeneration therapy for human periodontal intrabony defects using two different collagen membranes: a porous nonchemical cross-linking collagen membrane (NC) and a bilayer collagen membrane (BC). Methods: Thirty subjects were randomly assigned and divided into the following 3 groups: a test group (NC+BM), in which a NC was used with xenograft bone mineral (BM), a positive control group (BC+BM), in which a BC was used with xenograft BM, and a negative control group (BM), in which only xenograft BM was used. The following clinical measurements were taken at baseline and 3 months after surgery: plaque index, gingival index, probing pocket depth, gingival recession, and clinical attachment level. Radiographic analysis was performed at baseline, 1 week and 3 months after surgery. Results: Membrane exposure was not observed in any cases. Significant probing depth reduction, attachment-level gain and bone fill were observed for both test and control groups compared to baseline at 3 months after surgery (P<0.05). However, there were no statistically significant differences in clinical improvement and radiographic bone fill between treatment protocols (P>0.05). Conclusions: Within the limitations of this study, the results suggest that both NC and BC were comparable in terms of clinical and radiographic outcomes for the treatment of periodontal intrabony defects in human subjects.

성견 치근이개부 병소에서 흡수성 차폐막의 치주조직재생에 미치는 영향에 대한 조직병리학적 연구 (A Histo-Pathological Study of Effect on Periodontal Regeneration with Bioabsorbable Membrane on The Grade II Furcation Defects in Beagle Dogs)

  • 김재광;임성빈;정진형;이종헌
    • Journal of Periodontal and Implant Science
    • /
    • 제32권1호
    • /
    • pp.161-172
    • /
    • 2002
  • The present study evaluated the effects of guided tissue regeneration using xenograft material(deproteinated bovine bone powder), with and without biodegradable membrane in beagle dogs. Contralateral fenestration defects (6 ${\times}$ 4mm) were created 4 mm apical to the buccal alveolar crest of maxillary premolar teeth in 5 beagle dogs. Deproteinated bovine bone powders were implanted into fenestration defect and one randomly covered biodegradable membrane (experimental group). Biodegradable membrane was used to provide GTR. Tissue blocks including defects with soft tissues which were harvested following four & eight weeks healing interval, prepared for histo-phathologic analysis. The results of this study were as follows. 1. In control group, at 4 weeks after surgery, new bony trabecular contacted with interstitial tissue and osteocytes like cell were arranged in new bony trabecule. Bony lamellation was not observed. 2. In control gruop, at 8 weeks after surgery, scar-like interstitial tissue was filled defect and bony trabecule form lamellation. New bony trabecular was contacted with interstitial tissue but defect was not filled yet. 3. In experimental group, at 4 weeks after surgery, new bony trabecular partially recovered around damaged bone. But new bony trabecular was observed as irregularity and lower density. 4. In experimental group, at 8 weeks after surgery, lamella bone trabecular developed around bone cavity and damaged tissue was replaced with dense interstitial tissue. In conclusion, new bone formation regenerated more in experimental than control groups and there was seen observe more regular bony trabecular in experimental than control groups at 4 weeks after surgery. In control group, at 8 weeks after surgery, the defects was filled with scar-like interstitial tissue but, in experimental group, the defects was connected with new bone. Therefore xenograft material had osteoconduction but could not fill the defects. We thought that the effective regeneration of periodontal tissue, could be achieved using GTR with biodegradable membrane.