The purpose of this investigation was to examine the pattern of progression of periodontitis and the change in the extent and severity of the periodontal condition in young adults. Fourteen subjects with periodontitis, 11 males and 3 females in the age range 22-26, participated in the study. Following a baseline examination, the subjects were monitored for gingival index, probing pocket depth, gingival recession, probing attachment level and radiogrphic crestal bone height for 24 months without therapy. Re-examination were performed after 12 and 24 months. Gingival index, probing pocket depth, gingival recession and probing attachment level were assesed at 6 locations per tooth, and crestal bone height was assessed by subtraction radiography. The results from the follow-up examination revealed that the subjects underwent minor changes with respect to a series of different clinical parameters. The mean values of gingival index was improved, however, the mean values of probing pocket depth, gingival recession, probing attchment level and crestal bone height showed no significant change between baseline and the re-examination after 1 and 2 years.
Purpose: The purpose of the present study was to evaluate the effect of root planing on the reduction of probing pocket depth and the gain of clinical attachment depending on the pattern of bone resorption (vertical versus horizontal bone loss) in the interproximal aspect of premolar teeth that showed an initial probing pocket depth of 4-6 mm. Methods: In this study, we analyzed 68 teeth (15 from the maxilla and 53 from the mandible) from 32 patients with chronic periodontitis (17 men and 15 women; mean age, 53.6 years). The probing pocket depth and clinical attachment level at all six sites around each tooth were recorded before treatment to establish a baseline value, and then three months and six months after root planing. Results: The reduction in interdental pocket depth was 1.1 mm in teeth that experienced horizontal bone loss and 0.7 mm in teeth that experienced vertical bone loss. Interdental attachment was increased by 1.0 mm in teeth with horizontal bone loss and by 0.7 mm in teeth with vertical bone loss. The reduction of probing pocket depth and the gain of clinical attachment occurred regardless of defect patterns three and six months after root planing. Conclusions: The reduction of pocket depth and gain in the clinical attachment level were significantly larger in horizontally patterned interproximal bone defects than in vertical bone defects.
The ultimate goal of periodontal disease therapy is to promote the regeneration of lost periodontal tissue, there has been many attempts to develop a method to achieve this goal, but none of them was completely successful. This study was designed to compare the effects of treatment using resorbable barrier membrane($Biomesh^{?}$) in combination with autogenous bone graft material with control treated by only modified Widman flap. 22 infrabony defecs from 10 patients with chronic periodontitis were used for this study, 10 sites of them were treated with resorbable barrier membrane and autogenous bone graft material as experimental group and 12 site were treated by only modified Widman flap as control group. Clinical parameters including probing depth, gingival recession, bone probing depth and loss of attachment were recorded at 6-8 months later, and the significance of the changes was statistically analyzed. The results are as follows : 1. Probing depth of the two group was reduced with statistically significance(P<0.05), but this changes were not different between the two experiment, control group with statistically significance. 2. Gingival recession showed statistically significant increase in control group(P<0.05), but not in experimental group, and initial values of the two group were in statistically significant difference(P<0.05). 3. Bone probing depth showed statistically significant decrease in experimental group(P<0.05), but not in control group, and this changes were different between the two experiment, control group with statistically significance(P<0.05). 4. Loss of attachment showed statistically significant decrease in experimental group(P<0.05), but not in control group, and this changes were different between the two experiment, control group with statistically significance(P<0.05) On the basis of these results, treatment using resorbable barrier membrane in combination with autogenous bone graft material improve the probing depth, bone probing depth and loss of attachment in infrabony defects.
The purpose of the present study was to evaluate the clinical efficacy of guided tissue regeneration(GTR) using resorbable polylactic/polyglycolic copolymer(PLA/PGA) membrane in mandibular class II furcation involvement and to compare it to the clinical efficacy of only flap operation. Both procedures were conducted in 5 patients with class II furcation involvements. After 6 months of follow up, the probing pocket depth, clincial attachment level, bone probing depth, and radiographic changes were compared, and the following results were obtained: 1. GTR using PLA/PGA demonstrated a statistically significant reduction in probing pocket depth and bone probing depth, and the control group demonstrated a statistically significant reduction in bone probing depth. 2. The comparison between the experimental and control group failed to demonstrate statistically significant difference in clinical improvement, but more reduction in probing pocket depth and bone probing depth were observed in the experimental group. The probing pocket depth and the bone probing depth were $2.2{\pm}1.6mm$ and $2.4{\pm}1.1mm$ respectively in the control group, while they were $2.4{\pm}1.3mm$ and $3.0{\pm}1.2mm$ respectively in the experimental group. 3. Radiographic change was not detectable for the both groups during the 6 months of follow up. 4. Sites with deeper probing pocket depth at baseline examination showed greater amount of clinical improvement in both groups. Other clinical factors didn't have any significant effect on the treatment results. It is concluded that though there are some limitations, PLA/PGA membrane is effective for the treatment of mandibular class II furcation involvement.
Regeneration of Periodontium with PRP does not only improve regeneration rate and density of bone but have a possibility to estimate faster healing process for soft tissue. And also, autogenous bone and xenogenic bone graft are effective on regeneration of periodontium. The purpose of this study is to evaluate the effectiveness of autogenous bone and xenogenic bone $(BBP^{(R)})$ grafts with the PRP technique on regeneration of periodontium. 52 Generally healthy Pt. who had pocket depth 5mm at any of 6 surfaces of the teeth were in the study at Dept. of Perio. in Dankook Dental Hospital. Open Flap was treated for 18 infra-bony pockets as control group, autogenous bone with PRP was inserted for 25 infrabony pockets as first test group, and $(BBP^{(R)})$ with PRP was inserted for 22 infrabony pockets as 2nd test group. Then evaluation was made after 3 and 6 months 1. There were significant differences between average probing pocket depth and clinical attachment level of 3, 6 months and minimal and maximal attachment level after 6 months each other. 2. There were significant differences in average probing pocket depth of control group and 2nd experimental group between 1 and 6 months. For clinical attachment level and minimal and maximal proving attachment level, there was a significant difference after 6 month of surgery. 3. There was no significant difference between two test groups for average probing depth, clinical attachment level, and minimal and maximal probing attachment level. As the result, PRP with bone graft could be very effective for regeneration of periodontium and there was no difference between xenogenic bone and autogenous bone.
Kim, Tae-Il;Chung, Chong-Pyoung;Heo, Min-Suk;Park, Yoon-Jeong;Rhee, Sang-Hoon
Journal of Periodontal and Implant Science
/
제40권5호
/
pp.220-226
/
2010
Purpose: This study was performed to evaluate the periodontal wound healing effect of particulate equine bone mineral on canine alveolar bone defects. Methods: Twelve adult male beagle dogs were used as study subjects. The mandibular second and fourth premolars were extracted prior to the experimental surgery, and the extraction sites were allowed to heal for 8 weeks. After periodontal probing, two-walled defects were created at the mesial and distal sides of the mandibular third premolars bilaterally, and the defects were filled with equine particulate bone with collagen membrane or bovine particulate bone with collagen membrane, or collagen membrane alone. The defects without any treatment served as negative controls. After probing depth measurement, animals were sacrificed at 10, 16, and 24 post-surgery weeks for micro-computed tomographic and histomorphometric analysis. Results: The equine particulate bone-inserted group showed significantly decreased values of probing depth and first bone contact compared to the negative control and collagen membrane alone groups at weeks 10, 16, and 24 (P<0.05). There were no significant differences in the new cementum length, newly-formed bone area, or newly-formed bone volume between equine particulate bone- and bovine particulate bone-inserted groups, both of which showed significantly increased values compared to the negative control and collagen membrane alone groups (P<0.05). Conclusions: Equine particulate bone showed significant differences in probing depth, first bone contact, new cementum length, newly formed bone area, and bone volume fraction values when compared to the negative control and collagen membrane alone groups. There were no significant differences between equine and bovine particulate bone substitutes in these parameters; therefore, we can conclude that equine particulate bone is equivalent to bovine bone for periodontal regeneration.
Regeneration of Periodontium with PRP does not only improve regeneration rate and density of bone but have a possibility to estimate faster healing process for soft tissue. And also, synthetic bone and xenogenic bone graft are effective on regeneration of periodontium. The purpose of this study is to evaluate the effectiveness of synthetic bone ($Biogran^{(R)}$) and xenogenic bone ($BBP^{(R)}$) grafts with the PRP technique on regeneration of periodontium. 52 Generally healthy Pt. who had pocket depth 5mm at any of 6 surfaces of the teeth were in the study at Dept. of Perio. in Dankook Dental Hospital. Open Flap was treated for 18 infra-bony pockets as control group, $Biogran^{(R)}$ with PRP was inserted for 25 infrabony pockets as first test group, and $BBP^{(R)}$ with PRP was inserted for 22 infrabony pockets as 2nd test group. Then evaluation was made after 3 and 6 months 1. 6 months after surgery, each difference of average probing pocket depth was $2.61{\pm}0.23$ for control, $3.40{\pm}0.30$ for 1st test, and $3.45{\pm}0.37$ for 2nd test group. 2. 6 months after surgery, each difference of clinical probing attachment level was $1.39{\pm}0.12$ for control, $2.88{\pm}0,24$ for 1st, and $2.86{\pm}0,27$ for 2nd test group. 3. 6 months after surgery, each difference of Maximal probing attachment level was $1.11{\pm}0.16$ for control, $3.28{\pm}0.30$ for 1st, and $3.27{\pm}0.35$ for 2nd test group. 4. There were significant differences for clinical change of each three group which were between average probing pocket depth and clinical attachment level of 3,6 months and minimal and maximal attachment level after 6 months 5. There were significant differences for average probing pocket depth which were only at control group and 2nd test group between 1 and 6months. For clinical attachment level and minimal and maximal proving attachment level, there was a significant difference after 6month of surgery. 6. There was no significant difference between two test groups for average probing depth, clinical attachment level, and minima1 and maximal probing attachment level. As the result, PRP with bone graft is very effective for regeneration of periodontium and there is no difference between xenogenic bone and synthetic bone.
Purpose: Various bone graft materials are being used for periodontal tissue regeneration. Th materials are being developed continuously for ideal clinical effects. Therefore, it is necessary to identify the clinical characteristics of each bone graft material through comparing the various bone graft materials statistically and in doing so, proposing a more efficient bone graft material. In this study, the following results were attained through comparing the clinical effects among the bone graft materials, using the statistical method based on the clinical studies published at the department of periodontology of Yonsei hospital. Materials and Method: 6 selected studies of department of Periodontology at Yonsei University Hospital were based on clinical study of bone grafting in intrabony defects. It was compared the clinical parameters among the 6 clinical studies, using the statistical META analysis. Result: When comparing the probing depth reduction, there was a relatively great amount of decease when using the xenograft, Anorganic Bovine Derived Hydroxapatite Bone Matrix/Cell Binding Peptide(ABM/P-15: PepGen $P-15^{(R)}$) and the autogenous bone and absorbable membrane, d, 1-alctide/glycolide copolymer(GC: $Biomesh^{(R)}$). The allogfrafts showed a relatively low decrease in the probing depth and clinical attachment change. It also showed a slight decrease in the bone probing depth. The allografts showed various results according to different bone graft materials. When comparing the ABM/P-15 and bovine bone $powder(BBP^{(R)})$, ABM/P-15 showed a relatively high clinical attachment level and the bovine bone powder showed a relatively high clinical attachment level. The probing depth change and gingival recession change showed a lower value than the mean value between the two bone graft materials. The synthetic bone showed a relatively high decrease in clinical attachment level and periodontal probing depth change. There was a relatively larger amount of gingival recession when using Bioactive Glass(BG) but a relatively low bone regeneration effect was seen. Conclusion: Good restorative results of the periodontal tissue can be attained by applying the various bone graft materials being used today after identifying the accurate clinical effects.
Bone graft using growth factors and guided tissue regeneration have been used for the regeneration of infrabony defects which caused by periodontal disease. Calcium sulfate which is one of the resorbable barrier materials used for guided tissue regeneration. Platelet rich plasma which is a easy method to obtain the growth factors had many common points but, platelet rich plasma was still studying. This study was the comparative study between bone graft using platelet rich plasma and guided tissue regeneration using calcium sulfate barrier material in clinical view. For the study, 28 sites(2 or 3 wall infrabony defects) were treated. 14 infrabony defects were received surgical implantation of BBP-calcium sulfate composite with a calcium sulfate barrier and the others received BBP mixed with platelet rich plasma. Clinical outcome was accessed 3 and 6 months of postsurgery. 1. There was no statistical difference between CS group and PRP group in pocket depth, gingival recession, clinical attachment level, and probing bone level at baseline. 2. There was statistically significant reduction in probing depth, clinical attachment level, and probing bone level at 3 and 6 months postsurgery(p<0.05). 3. In the probing depth and clincial attachment level PPR group had less improvement than CS group, but there was no statistically difference at 3 and 6 months postsurgery. 4. In the recession PPR group had less recession than CS group, but there was no statistically difference at 3 and 6 months postsurgery. 5. In the probing bone level PPR group had less improvement than CS group, but there was no statistically difference at 6 months postsurgery. In conclusion bone graft using platelet rich plasma and guided tissue regeneration using calcium sulfate barrier showed similar clinical improvement for the treatment of 2 or 3 wall infrabony defects.
Bone graft and guided tissue regeneration have been used for the regeneration of periodontal tissue which is the ultimate goal of periodontal treatment. Recently, it was reported that some kind of growth factors were used for regeneration. Platelet rich plasma was researched that it could increase the density of bone and the rate of bone regeneration. For that, 25 patients which have pocket depth more than 5mm at any of 6 surfaces, of healthy patient without any systemic disease were treated. $Biogran^{?}$ Were grafted into 14 infrabony pockets as controls, and $Biogran^{(R)}$ with PRP were inserted into 31 infrabony pockets. And then, follwing evaluations were made at the end of 1, 3 and 6 months. 1. There was no statistical difference between control and experimental group in pocket depth, gingival recession, minimum probing attachment level and maximum probing attachment level at preoperation(p>0.05). 2. Decrease in probing pocket depth were reduced to 3.32mm for experimental group and 2.71mm for control group. The decrease was evident at the end of 1 month, they were 2.97mm and 2.29mm,and it was statistically difference(p<0.05). 3. Gingival recession was increased by 0.55mm in experimental group and 0.50mm in control group, it was evident at the end of 1 month. And it was statistically difference(p<0.05). 4. Minimum probing attachment level was increased by 0.35mm in experimental group and 0.36mm in control group, it was statistically difference(p<0.05). 5. Maximum probing attachment level was decreased by 3.19mm in experimental group and 2.93mm in control group, it was statistically difference(p<0.05). 6. There was no statistical difference between control and experimental group in pocket depth, gingival recession, minimum probing attachment level and maximum probing attachment level(p>0.05). There was statistical difference in decrease of pocket depth between pre-operation and 1 month after post-operation(p<0.05). In conclusion, bone graft using $Biogran^{?}$ and bone graft using $Biogran^{?}$ With platelet rich plasma were both effective in treatment of infrabony pocket, bone graft using $Biogran^{?}$ With platelet rich plasma was more effective in early soft tissue healing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.