• 제목/요약/키워드: bone marrow mesenchymal stem cells

검색결과 168건 처리시간 0.032초

Increasing injection frequency enhances the survival of injected bone marrow derived mesenchymal stem cells in a critical limb ischemia animal model

  • Kang, Woong Chol;Oh, Pyung Chun;Lee, Kyounghoon;Ahn, Taehoon;Byun, Kyunghee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권6호
    • /
    • pp.657-667
    • /
    • 2016
  • Critical limb ischemia (CLI) is one of the most severe forms of peripheral artery diseases, but current treatment strategies do not guarantee complete recovery of vascular blood flow or reduce the risk of mortality. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported to have a paracrine influence on angiogenesis in several ischemic diseases. However, little evidence is available regarding optimal cell doses and injection frequencies. Thus, the authors undertook this study to investigate the effects of cell dose and injection frequency on cell survival and paracrine effects. MSCs were injected at $10^6$ or $10^5$ per injection (high and low doses) either once (single injection) or once in two consecutive weeks (double injection) into ischemic legs. Mice were sacrificed 4 weeks after first injection. Angiogenic effects were confirmed in vitro and in vivo, and M2 macrophage infiltration into ischemic tissues and rates of limb salvage were documented. MSCs were found to induce angiogenesis through a paracrine effect in vitro, and were found to survive in ischemic muscle for up to 4 weeks dependent on cell dose and injection frequency. In addition, double high dose and low dose of MSC injections increased vessel formation, and decreased fibrosis volumes and apoptotic cell numbers, whereas a single high dose did not. Our results showed MSCs protect against ischemic injury in a paracrine manner, and suggest that increasing injection frequency is more important than MSC dosage for the treatment CLI.

Effects of Capsaicin on Adipogenic Differentiation in Bovine Bone Marrow Mesenchymal Stem Cell

  • Jeong, Jin Young;Suresh, Sekar;Park, Mi Na;Jang, Mi;Park, Sungkwon;Gobianand, Kuppannan;You, Seungkwon;Yeon, Sung-Heom;Lee, Hyun-Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권12호
    • /
    • pp.1783-1793
    • /
    • 2014
  • Capsaicin is a major constituent of hot chili peppers that influences lipid metabolism in animals. In this study, we explored the effects of capsaicin on adipogenic differentiation of bovine bone marrow mesenchymal stem cells (BMSCs) in a dose- and time-dependent manner. The BMSCs were treated with various concentrations of capsaicin (0, 0.1, 1, 5, and $10{\mu}M$) for 2, 4, and 6 days. Capsaicin suppressed fat deposition significantly during adipogenic differentiation. Peroxisome proliferator-activated receptor gamma, cytosine-cytosine-adenosine-adenosine-thymidine/enhancer binding protein alpha, fatty acid binding protein 4, and stearoyl-CoA desaturase expression decreased after capsaicin treatment. We showed that the number of apoptotic cells increased in dose- and time-dependent manners. Furthermore, we found that capsaicin increased the expression levels of apoptotic genes, such as B-cell lymphoma 2-associated X protein and caspase 3. Overall, capsaicin inhibits fat deposition by triggering apoptosis.

임상적용을 위한 세포치료제로서의 성체 중간엽줄기세포 (Adult Mesenchymal Stem Cells for Cell Therapy in Clinical Application)

  • 송인환
    • Journal of Yeungnam Medical Science
    • /
    • 제26권1호
    • /
    • pp.1-14
    • /
    • 2009
  • Human bone marrow-derived mesenchymal stem cells (MSCs) are a rare population of undifferentiated cells that have the capacity of self renewal and the ability to differentiate into mesodermal phenotypes, including osteocytes, chondrocytes, and adipocytes in vitro. Recently, MSCs have been shown to reside within the connective tissue of most organs, and their surface phenotype has been well analyzed. Many reports showed that transplanted MSCs enhanced regeneration as well as functional improvement of damaged organs and tissues. The wide differentiation plasticity of MSCs was expected to contribute to their demonstrated efficacy in a wide variety of experimental animal models and in human clinical trials. However, new findings suggest that the ability of MSCs to alter the tissue microenvironment via secretion of soluble factors may contribute more significantly than their capacity for differentiation in tissue repair. This review describes what is known about the cellular characteristics and differentiation potential of MSCs, which represent a promising stem cell population for further applications in regenerative medicine.

  • PDF

Oct4-Transfection한 중간엽줄기세포 유래 핵이식 배반포의 Oct4 발현 분포 및 세포 자멸사의 변화에 관한 연구 (Study on Distribution of Oct4 Expression and Change of Apoptosis in Nuclear Transfer Blastocyst using Oct4-Transfected Mesenchymal Stem Cells)

  • 이원재;이정현;노규진;이성림
    • 한국수정란이식학회지
    • /
    • 제31권1호
    • /
    • pp.81-88
    • /
    • 2016
  • There are various factors i.e. donor cell type, culture system as well as technical procedures which influence the pre-implantation embryonic development; however, may attempts have been made and still it is under investigation to improve the cloning efficiency using somatic cell nuclear transfer technique. It is has been investigated that stem cells like mesenchymal stem cell are able to more efficiently reprogram and reactivate the expression of early embryonic genes to promote nuclear transfer efficiency. In addition, Oct4 expression plays a pivotal role in early embryo development. In the present study, we investigated distribution of Oct4 expression and changes of apoptosis and total cell number in nuclear transfer blastocyst after using Oct4 transfected bone marrow stem cell as donor cells. Although Oct4-RFP expression was observed across blastocyst, more concentrated intensity was shown at hatched region in blastocyst on day 7. Reduction of apoptotic bodies was revealed in Oct4 transfected blastocyst by TUNEL staining, however, there was no significant difference in total cell number between Oct4 transfected and non-transfected nuclear transfer embryos. In conclusion, Oct4 transfected donor cells exhibited higher expression in hatching sight in day 7 blastocyst and were able to prevent apoptosis compared to non-transfected donor cells.

Tumor necrosis factor-α에 의한 골수 유래 중간엽 줄기세포의 골세포로의 분화 촉진에서 JNK의 역할 (Tumor Necrosis factor-α Promotes Osteogenesis of Human Bone Marrow-derived Mesenchymal Stem Cells through JNK-dependent Pathway)

  • 김미라;송해영;김재호
    • 생명과학회지
    • /
    • 제16권7호
    • /
    • pp.1207-1213
    • /
    • 2006
  • Tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$는 염증성 골질환에서의 골조직의 손실과 밀접한 관련이 있다. 본 연구에서는 인체 골수 유래 중간엽 줄기세포의 골세포로의 분화과정에 대한 $TNF-{\alpha}$의 영향을 조사하였다. $TNF-{\alpha}$는 골수 유래 중간엽 줄기세포의 골세포로의 분화를 나타내는 표시인 세포외 무기질 축적과 alkaline phosphatase의 발현의 증가를 일으켰으며 2ng/ml의 농도에서 최대의 증가를 나타내었다. $TNF-{\alpha}$에 의한 골세포로의 분화는 $NF_kB$의 저해제에 의해서는 영향받지 않았으나 JNK 특이 저해제인 SP600125에 의해 완벽하게 억제되었다. 이는 $TNF-{\alpha}$에 의한 골수 유래 중간엽 줄기세포의 골세포로의 분화과정에 JNK가 중요한 역할을 한다는 것을 제시한다.

골수기질세포 및 섬유아세포의 창상치유 촉진 성장인자 분비능 비교 (Comparison of Bone Marrow Stromal Cells with Fibroblasts in Wound Healing Accelerating Growth Factor Secretion)

  • 김세현;한승규;윤태환;김우경
    • Archives of Plastic Surgery
    • /
    • 제33권1호
    • /
    • pp.1-4
    • /
    • 2006
  • Cryopreserved fibroblast implants represent a major advancement for healing of chronic wounds. Bone marrow stromal cells, which include the mesenchymal stem cells, have a low immunity-assisted rejection and are capable of expanding profoundly in a culture media. Therefore, they have several advantages over fibroblasts in clinical use. The ultimate goal of this study was to compare the wound healing accelerating growth factor secretion of the bone marrow stromal cells with that of the fibroblasts and this pilot study particularly focuses on the growth factor secretion to accelerate wound healing. Bone marrow stromal cells and fibroblasts were isolated from the same patients and grown in culture. At 1, 3, and 5 days post-incubating, secretion of basic fibroblast growth factor(bFGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta(TGF-${\beta}$) were compared. In TGF-${\beta}$ secretion fibroblasts showed 12~21% superior results than bone marrow stromal cells. In contrast, bFGF levels in the bone marrow stromal cells were 47~89% greater than that in fibroblasts. The VEGF levels of the bone marrow stromal cells was 7~12 fold greater than that of the fibroblasts. Our results suggest that the bone marrow stromal cells have great potential for wound healing accelerating growth factor secretion.

Supplementation of retinoic acid alone in MSC culture medium induced germ cell-like cell differentiation

  • Kuldeep Kumar;Kinsuk Das;Ajay Kumar;Purnima Singh;Madhusoodan A. P.;Triveni Dutt;Sadhan Bag
    • 한국동물생명공학회지
    • /
    • 제38권2호
    • /
    • pp.54-61
    • /
    • 2023
  • Background: Germ cells undergo towards male or female pathways to produce spermatozoa or oocyte respectively which is essential for sexual reproduction. Mesenchymal stem cells (MSCs) have the potential of trans-differentiation to the multiple cell lineages. Methods: Herein, rat MSCs were isolated from bone marrow and characterized by their morphological features, expression of MSC surface markers, and in vitro differentiation capability. Results: Thereafter, we induced these cells only by retinoic acid supplementation in MSC medium and, could able to show that bone marrow derived MSCs are capable to trans-differentiate into male germ cell-like cells in vitro. We characterized these cells by morphological changes, the expressions of germ cell specific markers by immunophenotyping and molecular biology tools. Further, we quantified these differentiated cells. Conclusions: This study suggests that only Retinoic acid in culture medium could induce bone marrow MSCs to differentiate germ cell-like cells in vitro. This basic method of germ cell generation might be helpful in the prospective applications of this technology.

Isolation of Mesenchymal Stem-like Cells from a Pituitary Adenoma Specimen

  • Shim, Jin-Kyoung;Kang, Seok-Gu;Lee, Ji-Hyun;Chang, Jong Hee;Hong, Yong-Kil
    • 대한의생명과학회지
    • /
    • 제19권4호
    • /
    • pp.295-302
    • /
    • 2013
  • Some of the pituitary adenomas are invasive and spread into neighboring tissues. In previous studies, the invasion of pituitary adenomas is thought to be associated with epithelial-mesenchymal transition (EMT). In addition to that, we thought that mesenchymal stem cells (MSCs) exist in relevant microenvironment in pituitary adenoma. However, it has been little known about the existence of MSCs from pituitary adenoma. So we investigated whether mesenchymal stem-like cells (MSLCs) can be isolated from the pituitary adenoma specimen. We isolated and cultured candidate MSLCs from the fresh pituitary adenoma specimen with the same protocols used in culturing bone marrow derived MSCs (BM-MSCs). The cultured candidate MSLCs were analyzed by fluorescence-activated cell sorting (FACS) for surface markers associated with MSCs. Candidate MSLCs were exposed to mesenchymal differentiation conditions to determine the mesenchymal differentiation potential of these cells. To evaluate the tumorigenesis of candidate MSLCs from pituitary adenoma, we implanted these cells into the brain of athymic nude mice. We isolated cells resembling BM-MSCs named pituitary adenoma stroma mesenchymal stem-like cells (PAS-MSLCs). PAS-MSLCs were spindle shaped and had adherent characteristics. FACS analysis identified that the PAS-MSLCs had a bit similar surface markers to BM-MSCs. Isolated cells expressed surface antigen, positive for CD105, CD75, and negative for CD45, NG2, and CD90. We found that these cells were capable of differentiation into adipocytes, osteocytes and chondrocytes. Tumor was not developed in the nude mice brains that were implanted with the PAS-MSLCs. In this study, we showed that MSLCs can be isolated from a pituitary adenoma specimen which is not tumorigenic.

동결 보호제(DMSO) 농도에 따른 돼지 중간엽 줄기세포의 Caspase 3과 7 발현 (Activation of Caspase-3 and -7 on Porcine Bone Marrow Derived Mesenchymal Stem Cells (pBM-MSCs) Cryopreserved with Dimethyl Sulfoxide (DMSO))

  • 옥선아;노규진
    • 한국수정란이식학회지
    • /
    • 제27권3호
    • /
    • pp.183-187
    • /
    • 2012
  • Adult stem cell transplantation has been increased every year, because of the lack of organ donors for regenerative medicine. Therefore, development of reliable and safety cryopreservation and bio-baking method for stem cell therapy is urgently needed. The present study investigated safety of dimethyl sulfoxide (DMSO) such as common cryoprotectant on porcine bone marrow derived mesenchymal stem cells (pBM-MSCs) by evaluating the activation of Caspase-3 and -7, apoptosis related important signal pathway. pBM-MSCs used for the present study were isolated density gradient method by Ficoll-Paque Plus and cultured in A-DMEM supplemented 10% FBS at $38.5^{\circ}C$ in 5% $CO_2$ incubator. pBM-MSCs were cryopreserved in A-DMEM supplemented either with 5%, 10% or 20% DMSO by cooling rate at $-1^{\circ}C$/min in a Kryo 360 (planner 300, Middlesex, UK) and kept into $LN_2$. Survival rate of cells after thawing did not differ between 5% and 10% DMSO but was lowest in 20% DMSO by 0.4% trypan blue exclusion. Activation of Caspase-3 and -7 by Vybrant FAM Caspase-3 and -7 Assay Assay Kit (Molecular probes, Inc.OR, USA) was analyzed with a flow cytometer. Both of cryopreserved and control groups (fresh pBM-MSCs) were observed after the activation of Caspase-3 and -7. The activation did not differ between 5% and 10% DMSO, but was observed highest in 20% DMSO. Therefore 5% DMSO can be possibly used for cell cryopreservation instead of 10% DMSO.

Propranolol attenuates calorie restriction- and high calorie diet-induced bone marrow adiposity

  • Baek, Kyunghwa;Park, Hyun-Jung;Hwang, Hyo Rin;Baek, Jeong-Hwa
    • BMB Reports
    • /
    • 제47권10호
    • /
    • pp.587-592
    • /
    • 2014
  • We investigated the effects of ${\beta}$-adrenergic activation on bone marrow adiposity and on adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). C57BL/6 mice were subjected to a control (CON), high calorie (HIGH) or low calorie (LOW) diet for 12 weeks. In each group, mice were treated with vehicle (VEH) or propranolol. The number of adipocytes per area bone marrow was increased in LOWVEH and HIGHVEH mice compared with CONVEH mice, which was attenuated by propranolol. Isoproterenol increased lipid droplet accumulation and adipogenic marker gene expression in 3T3-L1 preadipocytes and mouse BMSCs, which were blocked by propranolol. Conditioned medium obtained from MC3T3-E1 osteoblasts suppressed adipogenic differentiation of 3T3-L1 cells, which was significantly attenuated by treatment of MC3T3-E1 cells with isoproterenol. These data suggest that ${\beta}$-adrenergic activation enhances bone marrow adipogenesis via direct stimulation of BMSCs adipogenesis and indirect inhibition of osteoblast anti-adipogenic potential.