Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.10.176

Propranolol attenuates calorie restriction- and high calorie diet-induced bone marrow adiposity  

Baek, Kyunghwa (Department of Pharmacology and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University)
Park, Hyun-Jung (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University)
Hwang, Hyo Rin (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University)
Baek, Jeong-Hwa (Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University)
Publication Information
BMB Reports / v.47, no.10, 2014 , pp. 587-592 More about this Journal
Abstract
We investigated the effects of ${\beta}$-adrenergic activation on bone marrow adiposity and on adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). C57BL/6 mice were subjected to a control (CON), high calorie (HIGH) or low calorie (LOW) diet for 12 weeks. In each group, mice were treated with vehicle (VEH) or propranolol. The number of adipocytes per area bone marrow was increased in LOWVEH and HIGHVEH mice compared with CONVEH mice, which was attenuated by propranolol. Isoproterenol increased lipid droplet accumulation and adipogenic marker gene expression in 3T3-L1 preadipocytes and mouse BMSCs, which were blocked by propranolol. Conditioned medium obtained from MC3T3-E1 osteoblasts suppressed adipogenic differentiation of 3T3-L1 cells, which was significantly attenuated by treatment of MC3T3-E1 cells with isoproterenol. These data suggest that ${\beta}$-adrenergic activation enhances bone marrow adipogenesis via direct stimulation of BMSCs adipogenesis and indirect inhibition of osteoblast anti-adipogenic potential.
Keywords
Adipocyte; Bone marrow adiposity; Beta-adrenergic receptor; Osteoblast; Propranolol;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Elefteriou, F., Ahn, J. D., Takeda, S., Starbuck, M., Yang, X., Liu, X., Kondo, H., Richards, W. G., Bannon, T. W., Noda, M., Clement, K., Vaisse, C. and Karsenty, G. (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514-520.   DOI   ScienceOn
2 Bachman, E. S., Dhillon, H., Zhang, C. Y., Cinti, S., Bianco, A. C., Kobilka, B. K. and Lowell, B. B. (2002) betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843-845.   DOI   ScienceOn
3 Collins, S., Daniel, K. W., Rohlfs, E. M., Ramkumar, V., Taylor, I. L. and Gettys, T. W. (1994) Impaired expression and functional activity of the beta 3- and beta 1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol. Endocrinol. 8, 518-527.
4 Kim, H., Pennisi, P. A., Gavrilova, O., Pack, S., Jou, W., Setser-Portas, J., East-Palmer, J., Tang, Y., Manganiello, V. C. and Leroith, D. (2006) Effect of adipocyte beta3-adrenergic receptor activation on the type 2 diabetic MKR mice. Am. J. Physiol.-Endocrinol. Metab. 290, E1227-E1236.   DOI   ScienceOn
5 da Silva, A. A., do Carmo, J., Dubinion, J. and Hall, J. E. (2009) The role of the sympathetic nervous system in obesity- related hypertension. Curr. Hypertens. Rep. 11, 206-211.   DOI   ScienceOn
6 Migliorini, R. H., Garofalo, M. A. and Kettelhut, I. C. (1997) Increased sympathetic activity in rat white adipose tissue during prolonged fasting. Am. J. Physiol. 272, R656-R661.
7 Bjurholm, A. (1991) Neuroendocrine peptides in bone. Int. Orthop. 15, 325-329.
8 Takeda, S., Elefteriou, F., Levasseur, R., Liu, X., Zhao, L., Parker, K. L., Armstrong, D., Ducy, P. and Karsenty, G. (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305-317.   DOI   ScienceOn
9 Trayhurn, P., Hoggard, N., Mercer, J. G. and Rayner, D. V. (1999) Leptin: fundamental aspects. Int. J. Obes. Relat. Metab. Disord. 23(Suppl 1), 22-28.
10 Zauner, C., Schneeweiss, B., Kranz, A., Madl, C., Ratheiser, K., Kramer, L., Roth, E., Schneider, B. and Lenz, K. (2000) Resting energy expenditure in short-term starvation is increased as a result of an increase in serum norepinephrine. Am. J. Clin. Nutr. 71, 1511-1515.
11 Tatsumi, S., Ito, M., Asaba, Y., Tsutsumi, K. and Ikeda, K. (2008) Life-long caloric restriction reveals biphasic and dimorphic effects on bone metabolism in rodents. Endocrinology 149, 634-641.   DOI   ScienceOn
12 Lecka-Czernik, B. (2012) Marrow fat metabolism is linked to the systemic energy metabolism. Bone 50, 534-539.   DOI   ScienceOn
13 Rosen, C. J., Ackert-Bicknell, C., Rodriguez, J. P. and Pino, A. M. (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit. Rev. Eukar. Gene Expr. 19, 109-124.   DOI
14 Chidiac, P., Hebert, T. E., Valiquette, M., Dennis, M. and Bouvier, M. (1994) Inverse agonist activity of beta-adrenergic antagonists. Mol. Pharmacol. 45, 490-499.
15 Bonnet, N., Beaupied, H., Vico, L., Dolleans, E., Laroche, N., Courteix, D. and Benhamou, C. L. (2007) Combined effects of exercise and propranolol on bone tissue in ovariectomized rats. J. Bone Miner. Res. 22, 578-588.   DOI   ScienceOn
16 Baek, K., Hwang, H. R., Park, H. J., Kwon, A., Qadir, A. S. and Baek, J. H. (2014) Propranolol, a beta-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice. BMB Rep. 2014 Jan 7, pii: 2599. [Epub ahead of print] PubMed PMID: 24393528.
17 Azzi, M., Pineyro, G., Pontier, S., Parent, S., Ansanay, H. and Bouvier, M. (2001) Allosteric effects of G protein overexpression on the binding of beta-adrenergic ligands with distinct inverse efficacies. Mol. Pharmacol. 60, 999-1007.   DOI
18 Rosen, C. J. (2008) Bone remodeling, energy metabolism, and the molecular clock. Cell Metab. 7, 7-10.   DOI   ScienceOn
19 Facchini, F. S., Stoohs, R. A. and Reaven, G. M. (1996) Enhanced sympathetic nervous system activity. The linchpin between insulin resistance, hyperinsulinemia, and heart rate. Am. J. Hypertens. 9, 1013-1017.   DOI   ScienceOn
20 Gerich, J. E. (1998) The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity. Endocr. Rev. 19, 491-503.   DOI
21 Brasaemle, D. L., Levin, D. M., Adler-Wailes, D. C. and Londos, C. (2000) The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim. Biophys. Acta 1483, 251-262.   DOI   ScienceOn
22 Baek, K., Cho, J. Y., Hwang, H. R., Kwon, A., Lee, H. L., Park, H. J., Qadir, A. S., Ryoo, H. M., Woo, K. M. and Baek, J. H. (2012) Myeloid Elf-1-like factor stimulates adipogenic differentiation through the induction of peroxisome proliferator-activated receptor gamma expression in bone marrow. J. Cell. Physiol. 227, 3603-3612.   DOI   ScienceOn
23 Fasshauer, M., Klein, J., Neumann, S., Eszlinger, M. and Paschke, R. (2001) Isoproterenol inhibits resistin gene expression through a G(S)-protein-coupled pathway in 3T3-L1 adipocytes. FEBS Lett. 500, 60-63.   DOI   ScienceOn
24 Li, H., Fong, C., Chen, Y., Cai, G. and Yang, M. (2010) Beta-adrenergic signals regulate adipogenesis of mouse mesenchymal stem cells via cAMP/PKA pathway. Mol. Cell Endocrinol. 323, 201-207.   DOI   ScienceOn
25 Muruganandan, S., Roman, A. A. and Sinal, C. J. (2009) Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: cross talk with the osteoblastogenic program. Cell. Mol. Life Sci. 66, 236-253.   DOI   ScienceOn
26 Lim, J. Y., Yi, T., Choi, J. S., Jang, Y. H., Lee, S., Kim, H. J., Song, S. U. and Kim, Y. M. (2013) Intraglandular transplantation of bone marrow-derived clonal mesenchymal stem cells for amelioration of post-irradiation salivary gland damage. Oral Oncol. 49, 136-143.   DOI   ScienceOn
27 Qadir, A. S., Woo, K. M., Ryoo, H. M. and Baek, J. H. (2013) Insulin suppresses distal-less homeobox 5 expression through the up-regulation of microRNA-124 in 3T3-L1 cells. Exp. Cell Res. 319, 2125-2134.   DOI   ScienceOn