• 제목/요약/키워드: bone marrow mesenchymal stem cells

검색결과 163건 처리시간 0.024초

15-Hydroxyprostaglandin Dehydrogenase Is Associated with the Troglitazone-Induced Promotion of Adipocyte Differentiation in Human Bone Marrow Mesenchymal Stem Cells

  • Noh, Min-Soo;Lee, Soo-Hwan
    • Biomolecules & Therapeutics
    • /
    • 제18권1호
    • /
    • pp.16-23
    • /
    • 2010
  • Adipocyte differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs) is not as efficient as that in murine pre-adipocytes when induced by adipogenic agents including insulin, dexamethasone, and 3-isobutyl-1-methylxanthine (IDX condition). Therefore, the promotion of adipocyte differentiation in hBM-MSCs has been used as a cell culture model to evaluate insulin sensitivity for anti-diabetic drugs. In hBM-MSCs, $PPAR{\gamma}$ agonists or sulfonylurea anti-diabetic drugs have been added to IDX conditions to promote adipocyte differentiation. Here we show that troglitazone, a peroxisome proliferator-activated receptor-gamma ($PPAR{\gamma}$) agonist, significantly reduced the levels of anti-adipogenic $PGE_2$ in IDX-conditioned hBM-MSC culture supernatants when compared to $PGE_2$ levels in the absence of $PPAR{\gamma}$ agonist. However, there was no difference in the mRNA levels of cyclooxygenases (COXs) and the activities of COXs and prostaglandin synthases during adipocyte differentiation in hBM-MSCs with or without troglitazone. In hBM-MSCs, troglitazone significantly increased the mRNA level of 15-hydroxyprostaglandin dehydrogenase (HPGD) which can act to decrease $PGE_2$ levels in culture. These results suggest that the role of $PPAR{\gamma}$ activation in promoting adipocyte differentiation in hBM-MSCs is to reduce anti-adipogenic $PGE_2$ levels through the up-regulation of HPGD expression.

PLLA/HA Composite Scaffold와 골수 줄기세포를 이용한 조직공학적 골재생에 대한 연구 (BONE TISSUE ENGINEERING USING PLLA/HA COMPOSITE SCAFFOLD AND BONE MARROW MESENCHYMAL STEM CELL)

  • 김병렬;장현석;임재석;이의석;김동현
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권4호
    • /
    • pp.323-332
    • /
    • 2008
  • Aim of the study: Scaffolds are crucial to tissue engineering/regeneration. Biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes such as brittleness and difficulty in shaping. In this study, poly(L-lactide)/hydroxyapatite(PLLA/HA) composite scaffolds were fabricated for in vivo bone tissue engineering. Material & methods: In this study, PLLA/HA composite microspheres were prepared by double emulsion-solvent evaporation method, and were evaluated in vivo bone tissue engineering. Bone marrow mesenchymal stem cell from rat iliac crest was differentiated to osteoblast by adding osteogenic medium, and was mixed with PLLA/HA composite scaffold in fibrin gel and was injected immediately into rat cranial bone critical size defect(CSD:8mm in diameter). At 1. 2, 4, 8 weeks after implantation, histological analysis by H-E staining, histomorphometric analysis and radiolographic analysis were done. Results: BMP-2 loaded PLLA/HA composite scaffolds in fibrin gel delivered with osteoblasts differentiated from bone marrow mesenchymal stem cells showed rapid and much more bone regeneration in rat cranial bone defects than control group. Conclusion: This results suggest the feasibility and usefulness of this type of scaffold in bone tissue engineering.

bFGF, PDGF-BB가 백서 골수기원 간엽 줄기세포의 조직골세포 분화에 미치는 영향에 관한 연구 (EFFECTS OF bFGF AND PDGF-BB ON OSTEOBLAST DIFFERENTIATION OF BONE MARROW-DERIVED MESENCHYMAL STEM CELL IN RAT)

  • 송진아;최진영
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권6호
    • /
    • pp.495-505
    • /
    • 2006
  • In this study we evaluate the effects of bFGF-BB and PDGF on in vitro proliferation, differentiation and mineralization of mesenchymal stem cells (MSCs) from rat. MSCs were prepared from the bone marrow of 6 or 7-week-old male rats with a technique previously described by Maniatopoulos et al. in 1988. Lineage differentiation to osteogenesis, chondrogenesis and adipogenesis were performed. At first, we characterized the cultured cell on passage 1, 3, 5, 7 with immunocytochemical staining using CD29, 44, 34, 45, ${\alpha}$-SMA and type I collagen. And to study the effects of bFGF and PDGF-BB on proliferation, differentiation and mineralization, we seeded the expanded cell at a density of 6 $6{\times}10^3\;cells/cm^2$ to 100-mm dish for evaluation of cell proliferation and MTT assay was carried out on day 2, 4, 7, 9. We also resuspended the cells with same density $(6{\times}10^3\;cells/cm^2)$ to 24 well plates for subculture. On the following day, the attached cells were exposed to 2.5ng/ml bFGF and/or 25ng/ml PDGF-BB daily during 5 days. The osteocalcin (OC) level was assessed and mineral contents were evaluated with alizarin red S staining on subculture day 2, 7, 14, 21. We identified the mesenchymal stem cell from the bone marrow derived cells of rat through their successful multi-differentiation and stable display of its phenotype. And bFGF and PDGF-BB showed the effect that inhibited osteoblastic differentiation and mineralization mildly in above concentration at in vitro culture. This study was supported by grant 04-2004-0120 from the Seoul National University Hospital Research Fund.

Use of stem cells in bone regeneration in cleft palate patients: review and recommendations

  • Amiri, Mohammad Amin;Lavaee, Fatemeh;Danesteh, Hossein
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제48권2호
    • /
    • pp.71-78
    • /
    • 2022
  • This study was conducted to review the efficacy of different sources of stem cells in bone regeneration of cleft palate patients. The majority of previous studies focused on the transplantation of bone marrow mesenchymal stem cells. However, other sources of stem cells have also gained considerable attention, and dental stem cells have shown especially favorable outcomes. Additionally, approaches that apply the co-culture and co-transplantation of stem cells have shown promising results. The use of different types of stem cells, based on their accessibility and efficacy in bone regeneration, is a promising method in cleft palate bone regeneration. In this regard, dental stem cells may be an ideal choice due to their efficacy and accessibility. In conclusion, stem cells, despite the lengthy procedures required for culture and preparation, are a suitable alternative to conventional bone grafting techniques.

Mesenchymal stem cells for restoration of ovarian function

  • Yoon, Sook Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제46권1호
    • /
    • pp.1-7
    • /
    • 2019
  • With the progress of regenerative medicine, mesenchymal stem cells (MSCs) have received attention as a way to restore ovarian function. It has been reported that MSCs derived from bone marrow, adipose, umbilical cord blood, menstrual blood, and amniotic fluid improved ovarian function. In light of previous studies and advances in this field, there are increased expectations regarding the utilization of MSCs to restore ovarian function. This review summarizes recent research into potential applications of MSCs in women with infertility or primary ovarian insufficiency, including cases where these conditions are induced by anticancer therapy.

가토에서 자가유래 골아줄기세포를 이용한 상악동 골 이식술시 비계체로서 Bio-$Oss^{(R)}$의 효과에 관한 연구 (THE EFFECTS OF BIO-$OSS^{(R)}$ AS A SCAFFOLDS DURING SINUS BONE GRAFT USING MESENCHYMAL STEM CELLS IN RABBIT)

  • 이준;성대혁;최재영;최성림;차수련;장재덕;김은철
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제33권5호
    • /
    • pp.405-418
    • /
    • 2007
  • Mesenchymal stem cells(MSCs) have been though to be multipotent cells that can replicate that have the potential to differentiate into lineages of mesenchymal tissue including the bone, cartilage, fat, tendon, muscle, and marrow stroma. Especially, scaffolds to support cell-based tissue engineering are critical determinants of clinical efforts to regenerate and repair the body. Selection of a matrix carrier imvolves consideration of the matrix's role as a scaffold for physical support and host tissue integration as well as its ability to support of synergize the osteoinductive program of the implanted mesenchymal stem cell. The aim of this study is to evaluate the effect of autobone and Bio-$Oss^{(R)}$ to adherent mesenchymal stem cells as scaffolds on sinus augmentation with fibrin glue mixture in a rabbit model. 16 New Zealand White rabbits were divided randomly into 4 groups based on their time of sacrifice(1, 2, 4 and 8 weeks). First, mesenchymal stem cells were isolated from iliac crest marrow of rabbits and expanded in vitro. Cell culture was performed in accordance with the technique described by Tsutsumi et al. In the present study, the animals were sacrificed at 1, 2, 4 and 8 weeks after transplantation, and the bone formation ability of each sides was evaluated clinically, radiologically, histologically and histomorphologically. According to the histological observations, autobone scaffolds group showed integrated graft bone with host bone from sinus wall. At 2 and 4 weeks, it showed active newly formed bone and neovascularization. At 8 weeks, lamellae bone was observed in sinus graft material area. Radiologically, autobone with stem cell showed more radiopaque than Bio-$Oss^{(R)}$ scaffolds group. there were significant differences in bone volume between 4 and 8 weeks(p<0.05).

TNF-α-Induced SOX5 Upregulation Is Involved in the Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Through KLF4 Signal Pathway

  • Xu, Lijun;Zheng, Lili;Wang, Zhifang;Li, Chong;Li, Shan;Xia, Xuedi;Zhang, Pengyan;Li, Li;Zhang, Lixia
    • Molecules and Cells
    • /
    • 제41권6호
    • /
    • pp.575-581
    • /
    • 2018
  • Postmenopausal osteoporosis (PMOP) is a common systemic skeletal disease characterized by reduced bone mass and microarchitecture deterioration. Although differentially expressed SOX5 has been found in bone marrow from ovariectomized mice, its role in osteogenic differentiation in human mesenchymal stem cells (hMSCs) from bone marrow in PMOP remains unknown. In this study, we investigated the biological function of SOX5 and explore its molecular mechanism in hMSCs from patients with PMOP. Our findings showed that the mRNA and protein expression levels of SOX5 were upregulated in hMSCs isolated from bone marrow samples of PMOP patients. We also found that SOX5 overexpression decreased the alkaline phosphatase (ALP) activity and the gene expression of osteoblast markers including Collagen I, Runx2 and Osterix, which were increased by SOX5 knockdown using RNA interference. Furthermore, $TNF-{\alpha}$ notably upregulated the SOX5 mRNA expression level, and SOX5 knockdown reversed the effect of $TNF-{\alpha}$ on osteogenic differentiation of hMSCs. In addition, SOX5 overexpression increased Kruppel-like factor 4 (KLF4) gene expression, which was decreased by SOX5 silencing. KLF4 knockdown abrogated the suppressive effect of SOX5 overexpression on osteogenic differentiation of hMSCs. Taken together, our results indicated that $TNF-{\alpha}$-induced SOX5 upregulation inhibited osteogenic differentiation of hMSCs through KLF4 signal pathway, suggesting that SOX5 might be a novel therapeutic target for PMOP treatment.

Mesenchymal stem cells in the treatment of osteonecrosis of the jaw

  • Nifosi, Gianfilippo;Nifosi, Lorenzo;Nifosi, Antonio Fabrizio
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제47권2호
    • /
    • pp.65-75
    • /
    • 2021
  • Medication-related osteonecrosis of the jaw (MRONJ) has recently associated to the increase in antiresorptive and anti-angiogenic drugs prescriptions in the treatment of oncologic and osteoporotic patients. The physiopathogenesis of MRONJ remains unclear and available treatments are unsatisfactory. Newer pharmacological treatments have shown good results, but are not curative and could have major side effects. At the same time as pharmacological treatments, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic modality for tissue regeneration and repair. MSCs are multipotential non-hematopoietic progenitor cells capable to differentiating into multiple lineages of the mesenchyme. Bone marrow MSCs can differentiate into osteogenic cells and display immunological properties and secrete paracrine anti-inflammatory factors in damaged tissues. The immunomodulatory, reparative, and anti-inflammatory properties of bone marrow MSCs have been tested in a variety of animal models of MRONJ and applied in specific clinical settings. The aim of this review is to discuss critically the immunogenicity and immunomodulatory properties of MSCs, both in vitro and in vivo, the possible underlying mechanisms of their effects, and their potential clinical use as modulators of immune responses in MRONJ, and to identify clinical safety and recommendations for future research.

Carboxymethyl Chitosan Promotes Migration and Inhibits Lipopolysaccharide-Induced Inflammatory Response in Canine Bone Marrow-Derived Mesenchymal Stem Cells

  • Ryu, Ho-Sung;Ryou, Seong-Hwan;Jang, Min;Ku, Sae-Kwang;Kwon, Young-Sam;Seo, Min-Soo
    • 한국임상수의학회지
    • /
    • 제38권6호
    • /
    • pp.261-268
    • /
    • 2021
  • The study was conducted to evaluate the effects of carboxymethyl chitosan (CMC) on proliferation, migration, and lipopolysaccharide (LPS)-induced inflammatory response in canine bone marrow-derived mesenchymal stem cells (BMSCs). The proliferation and migration of BMSCs were examined after treatment with CMC. The effect of CMC on the mRNA expression of inflammatory cytokines, such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β, was also evaluated by reverse transcription polymerase chain reaction (RT-PCR). In the proliferation assay, no significant changes were found at all CMC concentrations compared with controls. The migration assay showed that CMC dose-dependently stimulated the migration of BMSCs in normal and LPS-treated conditions. RT-PCR showed that TNF-α and IL-10 expressions were suppressed in the BMSCs after CMC treatment. However, other genes were not affected. Taken together, CMC promoted BMSC migration and inhibited TNF-α and IL-10. Therefore, CMC may be possible to regulate wound healing when mesenchymal stem cells are applied in inflammatory diseases.

Canine Mesenchymal Stem Cells Derived from Bone Marrow: Isolation, Characterization, Multidifferentiation, and Neurotrophic Factor Expression in vitro

  • Jung, Dong-In;Ha, Jeong-Im;Kim, Ju-Won;Kang, Byeong-Teck;Yoo, Jong-Hyun;Park, Chul;Lee, Jong-Hwan;Park, Hee-Myung
    • 한국임상수의학회지
    • /
    • 제25권6호
    • /
    • pp.458-465
    • /
    • 2008
  • The purpose of this study is to characterize canine mesenchymal stem cells (MSCs) derived from bone marrow (BM) for use in research on the applications of stem cells in canine models of development, physiology, and disease. BM was harvested antemortem by aspiration from the greater tubercle of the humerus of 30 normal beagle dogs. Canine BM-derived MSCs were isolated according to methods developed for other species and were characterized based on their morphology, growth traits, cell-surface antigen profiles, differentiation repertoire, immunocytochemistry results, and neurotrophic factor expression in vitro. The canine MSCs exhibited a fibroblast-like morphology with a polygonal or spindle-shaped appearance and long processes; further, their cell-surface antigen profiles were similar to those of their counterparts in other species such as rodents and humans. The canine MSCs could differentiate into osteocytes and neurons on incubation with appropriate induction media. RT-PCR analysis revealed that these cells expressed NGF, bFGF, SDF-1, and VEGF. This study demonstrated that isolating canine MSCs from BM, stem-cell technology can be applied to a large variety of organ dysfunctions caused by degenerative diseases and injuries in dogs. Furthermore, our results indicated that canine MSCs constitutively secrete endogenous factors that enhance neurogenesis and angiogenesis. Therefore, these cells are potentially useful for treating dogs affected with various neurodegenerative diseases and spinal-cord injuries.