• 제목/요약/키워드: bone marrow cells

Search Result 883, Processing Time 0.027 seconds

Neural-Cadherin Influences the Homing of Terminally Differentiated Memory CD8 T Cells to the Lymph Nodes and Bone Marrow

  • Kim, Kyong Hoon;Choi, Aryeong;Kim, Sang Hoon;Song, Heonju;Jin, Seohoon;Kim, Kyungim;Jang, Jaebong;Choi, Hanbyeul;Jung, Yong Woo
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.795-804
    • /
    • 2021
  • Memory T (TM) cells play an important role in the long-term defense against pathogen reinvasion. However, it is still unclear how these cells receive the crucial signals necessary for their longevity and homeostatic turnover. To understand how TM cells receive these signals, we infected mice with lymphocytic choriomeningitis virus (LCMV) and examined the expression sites of neural cadherin (N-cadherin) by immunofluorescence microscopy. We found that N-cadherin was expressed in the surroundings of the white pulps of the spleen and medulla of lymph nodes (LNs). Moreover, TM cells expressing high levels of killer cell lectin-like receptor G1 (KLRG1), a ligand of N-cadherin, were co-localized with N-cadherin+ cells in the spleen but not in LNs. We then blocked N-cadherin in vivo to investigate whether it regulates the formation or function of TM cells. The numbers of CD127hiCD62Lhi TM cells in the spleen of memory P14 chimeric mice declined when N-cadherin was blocked during the contraction phase, without functional impairment of these cells. In addition, when CD127loKLRG1hi TM cells were adoptively transferred into anti-N-cadherin-treated mice compared with control mice, the number of these cells was reduced in the bone marrow and LNs, without functional loss. Taken together, our results suggest that N-cadherin participates in the development of CD127hiCD62Lhi TM cells and homing of CD127loKLRG1hi TM cells to lymphoid organs.

Inhibiting and Repairing Effects of Bojung-ikki-tang Gamibang on Cyclophosphamide induced Bone Marrow Injuries in Rats (보중익기탕가미방(補中益氣湯加味方)이 cyclophosphamide 투여로 인한 골수손상의 억제 및 회복에 미치는 영향)

  • Ko, Heung;Kim, Dong-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.736-742
    • /
    • 2005
  • This study was carried out to investigate the inhibiting and repairing effects of Bojung-ikki-tang Gamibang(BI-G) on the bone marrow injuries in rats. Bone marrow injury was induced by a single intraperitoneal injection of cyclophosphamide(CP)(150mg/kg). In experiment I, designed for inhibiting effect, extract of BI-G(80mg) was administrated from pre-5 days to post-5 days of CP injection. In experiment II, designed for repairing effect, extract of BI-G(80mg) was administrated after 5 days to 12 days of CP injection. Hematological and histopathological examinations were performed at 5 days after CP injection in experiment I, and at 12 days after CP injection in experiment II. In experiment I, the results were as follows ; RBC(${\times}10^6/{\mu}l$) of BI-G treated group$(8.39{\pm}0.84)$ was increased significantly compared with control group$(7.52{\pm}7.67)$. Hemoglobin(g/dl) of BI-G treated group$(13.76{\pm}1.20)$ was increased significantly compared with control group$(12.24{\pm}1.11)$. WBC(${\times}10^3/{\mu}l$) of BI-G treated group$(1.75{\pm}0.41)$ was increased significantly compared with control group$(0.55{\pm}0.17)$. Necrotic changes of myeloid cells of BI-G treated group were less severe than those of control group. Histopathologically, distention of sinus and edematous changes of bone marrow of BI-G treated group were alleviated compared with those of control group. In experiment II, the results were as follows ; WBC(${\times}10^3/{\mu}l$) of BI-G treated group(4.27 0.94) was increased significantly compared with control group$(3.02{\pm}0.79)$. Hemoglobin(g/dl) of BI-G treated group$(12.61{\pm}0.85)$ was increased significantly compared with control group$(11.49{\pm}0.74)$. Platelets(${\times}10^3/{\mu}l$) of BI-G treated group$(1885{\pm}133)$ was increased significantly compared with control group$(1616{\pm}251)$. These results indicated that Bojung-ikki-tang Gamibang has the inhibiting and repairing effects on the cyclophosphamide-induced bone marrow injuries in rats.

THE EFFECTS OF BIO-$OSS^{(R)}$ AS A SCAFFOLDS DURING SINUS BONE GRAFT USING MESENCHYMAL STEM CELLS IN RABBIT (가토에서 자가유래 골아줄기세포를 이용한 상악동 골 이식술시 비계체로서 Bio-$Oss^{(R)}$의 효과에 관한 연구)

  • Lee, Jun;Sung, Dae-Hyuk;Choi, Jae-Young;Choi, Sung-Rym;Cha, Su-Ryun;Jang, Jae-Deog;Kim, Eun-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.405-418
    • /
    • 2007
  • Mesenchymal stem cells(MSCs) have been though to be multipotent cells that can replicate that have the potential to differentiate into lineages of mesenchymal tissue including the bone, cartilage, fat, tendon, muscle, and marrow stroma. Especially, scaffolds to support cell-based tissue engineering are critical determinants of clinical efforts to regenerate and repair the body. Selection of a matrix carrier imvolves consideration of the matrix's role as a scaffold for physical support and host tissue integration as well as its ability to support of synergize the osteoinductive program of the implanted mesenchymal stem cell. The aim of this study is to evaluate the effect of autobone and Bio-$Oss^{(R)}$ to adherent mesenchymal stem cells as scaffolds on sinus augmentation with fibrin glue mixture in a rabbit model. 16 New Zealand White rabbits were divided randomly into 4 groups based on their time of sacrifice(1, 2, 4 and 8 weeks). First, mesenchymal stem cells were isolated from iliac crest marrow of rabbits and expanded in vitro. Cell culture was performed in accordance with the technique described by Tsutsumi et al. In the present study, the animals were sacrificed at 1, 2, 4 and 8 weeks after transplantation, and the bone formation ability of each sides was evaluated clinically, radiologically, histologically and histomorphologically. According to the histological observations, autobone scaffolds group showed integrated graft bone with host bone from sinus wall. At 2 and 4 weeks, it showed active newly formed bone and neovascularization. At 8 weeks, lamellae bone was observed in sinus graft material area. Radiologically, autobone with stem cell showed more radiopaque than Bio-$Oss^{(R)}$ scaffolds group. there were significant differences in bone volume between 4 and 8 weeks(p<0.05).

Suppressive Effect of N-Acetylcysteine on the Adriamycin-Induced Micronuclei Formation in Mouse Bone-marrow Cells (생쥐 골수세포에서 아드리아마이신의 소핵생성에 미치는 N-마세틸시스테인의 억제효과)

  • 손수정;허인회;최성규;허문영
    • YAKHAK HOEJI
    • /
    • v.37 no.3
    • /
    • pp.278-285
    • /
    • 1993
  • The anticlastogenic effect of N-acetylcysteine was tested in vivo in mouse bone-marrow micronucleus assay. The frequencies of micronuclei induced by adriamycin (5 mg/kg i.p.) in bonemarrow cells were decreased by the oral administration of N-acetylcysteine at 12 h before adriamycin injection. The observed suppressing effect was not a reflection of a delay in the formation of micronuclei by the cytotoxic effect of N-acetylcysteine. The anticlastogenic effects of SH compound including N-acetylcysteine, cysteine, cystine, S-carboxy methylcysteine and glutathione were also investigated by the multiple pretreatment. Each SH compound was administered orally every day for 5 days and adriamycin (5 mg/kg i.p.) was injected at 24h after the last dose of test compound. N-acetylcysteine and glutathione showed significantly the suppressive effect at dose of 10 and 25 mg/kg for N-acetylcysteine and at the dose of 25 mg/kg for glutathione. Our study suggests that N-acetylcysteine is capable of protecting the chromosomal damages in the normal cells during cancer chemotherapy by adriamycin, and may act as an anticlastogen against induction of micronuclei by superoxide generating agent such as adriamycin.

  • PDF

The Rat Myosin Light Chain Promoter-Driven DsRed Reporter System Allows Specific Monitoring of Bone Marrow Mesenchymal Stem Cell- Derived Cardiomyocytes

  • Choi, Seung-Cheol;Lim, Do-Sun
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.21-25
    • /
    • 2008
  • Bone marrow mesenchymal stem cells (BMMSCs) have the capacity for self-renewal and differentiation into a variety of cell types. They represent an attractive source of cells for gene and cell therapy. The purpose of this study is to direct the specific expression of the DsRed reporter gene in $Sca-1^+$ BMMSCs differentiated into a cardiomyogenic lineage. We constructed the prMLC-2v-DsRed vector expressing DsRed under the control of the 309 tp fragment of the rat MLC-2v 5'-flanking region. The specific expression of the DsRed reporter gene under the transcriptional control of the 309 bp fragment of the rat MLC-2v promoter was tested in 5-azacytidine healed-$Sca-1^+$ BMMSCs over 2 weeks after the prMLC-2v-DsRed transfection. The prMLC-2v-DsRed was specifically expressed in the $Sca-1^+$ BMMSCs with cardiomyogenic lineage differentiation and it demonstrates that the 309 bp sequences of the rat MLC-2v 5'-flanking region is sufficient to confer cardiac specific expression on a DsRed reporter gene. The cardiac-specific promoter-driven reporter vector provides an important tool for the study of stem cell differentiation and cell replacement therapy in ischemic cardiomyopathy.

Isolation and Functional Examination of the Long Non-Coding RNA Redrum

  • Lee, Yerim;Park, Charny;Lee, Sanghyuk;Lee, Daekee;Kim, Jaesang
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.134-139
    • /
    • 2018
  • Here, we report isolation of multiple long non-coding RNAs (lncRNAs) expressed tissue-specifically during murine embryogenesis. One of these, subsequently came to be known as Redrum, is expressed in erythropoietic cells in fetal liver and adult bone marrow. Redrum transcription is also detected during pregnancy in the spleen where extramedullary hematopoiesis takes place. In order to examine the function of Redrum in vivo, we generated a gene-targeted murine model and analyzed its embryonic and adult erythropoiesis. The homozygous mutant embryo showed no apparent deficiency or defect in erythropoiesis. Adult erythropoiesis in bone marrow and in the spleen during pregnancy likewise showed no detectable phenotype as red blood cells matured in normal fashion. The phenotype is in contrast to the reported function of Redrum in vitro, and our observation implies that Redrum plays in vivo an accessory or supplementary role whose loss is compatible with normal erythropoiesis.

BONE REGENERATION WITH ADIPOSE TISSUE-DERIVED MESENCHYMAL STEM CELL AND HA/TCP (HA/TCP 골이식재상에 이식된 지방유래 줄기세포의 골모세포로의 분화 및 골형성에 대한 연구)

  • Rim, Jae-Suk;Gwon, Jong-Jin;Jang, Hyon-Seok;Lee, Eui-Seok;Jeong, You-Min;Lee, Tai-Hyung;Park, Jeong-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.2
    • /
    • pp.97-106
    • /
    • 2010
  • Aim of the study: An alternative source of adult stem cells that could be obtained in large quantities, under local anesthesia, with minimal discomfort would be advantageous. Adipose tissue could be processed to obtain a fibroblast-like population of cells or adipose tissue-derived stromal cells (ATSCs). This study was performed to confirm the availability of ATSCs in bone tissue engineering. Materials amp; Methods: In this study, adipose tissue-derived mesenchymal stem cell was extracted from the liposuctioned abdominal fat of 24-old human and cultivated, and the stem cell surface markers of CD 105 and SCF-R were confirmed by immunofluorescent staining. The proliferation of bone marrow mesenchymal stem cell and ATSCs were compared, and evaluated the osteogenic differentiation of ATSCs in a specific osteogenic induction medium. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific BMP-2, ALP, Cbfa-1, Osteopontin and osteocalcin were confirmed by RT-PCR. With differentiation of ATSCs, calcium concentration was assayed, and osteocalcin was evaluated by ELISA (Enzyme-linked immunosorbant assay). The bone formation by 5-week implantation of HA/TCP block loaded with bone marrow mesenchymal stem cells and ATSCs in the subcutaneous pocket of nude mouse was evaluated by histologic analysis. Results: ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. ATSCs could be easily identified through fluorescence microscopy, and bone formation in vivo was confirmed by using ATSC-loaded HA/TCP scaffold. Conclusions: The present results show that ATSCs have an ability to differentiate into osteoblasts and formed bone in vitro and in vivo. So ATSCs may be an ideal source for further experiments on stem cell biology and bone tissue engineering.

The Effect of Mesenchymal Stem Cells on the Activation of Dendritic Cells in the Cell Culture Insert System (세포배양삽입체계(Cell Culture Insert System)에서 중간엽 줄기세포(Mesenchymal Stem Cell)가 수지상세포(Dendritic Cell)의 활성화에 미치는 영향)

  • Kim, Kee Won;Park, Suk Young;Lee, Kyung Bock;Kim, Hyun-su
    • IMMUNE NETWORK
    • /
    • v.4 no.2
    • /
    • pp.88-93
    • /
    • 2004
  • Background: Bone marrow mesenchymal stem cells (MSC) inhibit the immune response of lymphocytes to specific antigens and dendritic cells (DC) are professional antigenpresenting cells whose function is to present antigen to naive T-lymphocytes with high efficiency and play a central role in the regulation of immune response. We studied the effects of MSC on DC to evaluate the relationship between MSC and DC in transplantation immunology. Methods: MSC were expanded from the bone marrow and DC were cultured from peripheral blood mononuclear cells (PBMNC) of 6 myelogenous leukemia after achieving complete response. Responder cells isolated from PBMNC and lysates of autologous leukemic cells are used as tumor antigen. The effect of MSC on the DC was analyzed by immunophenotype properties of DC and by proliferative capacity and the amount of cytokine production with activated PBMNC against the allogeneic lymphocytes. Also, cytotoxicity tests against leukemic cells studied to evaluate the immunologic effect of MSC on the DC. Results: MSC inhibit the CD83 and HLA-class II molecules of antigen-loaded DC. The proliferative capacity and the amount of INF-$\gamma$ production of lymphocytes to allogeneic lymphocytes were decreased in DC co-cultured with MSC. Also the cytotoxic activity of lymphocytes against leukemic cells was decreased in DC co-cultured with MSC. Conclusion: MSC inhibit the activation and immune response of DC induced by allogeneic or tumor antigen.

The Characteristics of $V_H$ Gene Family Expression in Early B Cells (어린 B세포가 갖는 $V_H$유전자 발현의 특성)

  • JEONG Hyun Do;HUH Min-Do
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.114-122
    • /
    • 1995
  • Defining the mechanisms of B cell diversification which establish the immune repertoire is fundamental to understand how the immune response is regulated. In this report, B cell differentiation and diversification focused on the regulation of immunoglobulin $V_H$ gene expression during ontogeny were analyzed by in situ hybridization technique. Fetal liver B cells in .different gestational days from 16d to 20d showed the predominant expression of $V_H7183$ and $V_HQ52$ without transition of repertoire during the observed gestation days. The two subsets of fetal liver B cells separated according to different differentiation stages based on the presence of tell surface immunoglobulin also did not indicate apparent difference in expressed $V_H$ gene family profiles. B cells in fetal spleen as an another hematopoietic lymphoid tissue in fetus also expressed similar $V_H$ gene repertoire to that in fetal liver B cells. This distinct pattern of $V_H$ gene expression in fetal B cells from that of adult B cells were not changed even after four weeks contact with adult bone marrow microenvironment supplied by the established adult bone marrow stromal cell layers. Thus, the restricted $V_H$ gene repertoire of B cells in fetus which is distinct from that in adult appears to be associated more with the genetic potential of fetal B cell progenitors and less with environmental influences or differentiation stages or compartmentalization.

  • PDF

Activation of Immune System & Antimetastatic Effects of Ojeok-san by Oral Administration (오적산(五積散) 경구투여에 의한 면역활성과 종양 전이 억제 효과)

  • Lee, Mi-Joo;Hwang, Deok-Sang;Lee, Jin-Moo;Jang, Jun-Bock;Lee, Kyung-Sub;Lee, Chang-Hoon
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.27 no.2
    • /
    • pp.34-45
    • /
    • 2014
  • Objectives: This study was designed to investigate intestinal immune system activation and antimetastatic effect of Ojeok-san on cancer cells by oral administration. Methods: Cell viability of Ojeok-san was tested with colon 26-M3.1 carcinoma cells and Peyer's patch cells in vitro. Antimetastatic experiments were conducted in vivo mouse model by using colon 26-M3.1 carcinoma cell. To observe immunomodulating effects of Ojeok-san on Peyer's patch cells, we measured interleukin (IL)-4, GM-CSF. In addition to observing effects of Ojeok-san on hematopoiesis, we measured proliferation of bone marrow cells mediated by Peyer's patch cells in vitro. IgA induction activated in serum and intestinal content was measured to observe the effect of orally administered Ojeok-san on mucosal immune system. After administering Ovalbumin (OVA) with Ojeok-san, Proliferation of Peyer's patch cell was measured to investigate gut immunostimulatory effect. Results: in vitro cytotoxicity analysis, the inhibitory concentration $(IC)_{50}$ of the colon 26-M3.1 carcinoma cell was $890{\mu}g/ml$. $IC_{50}$ of the Peyer's patch cells with LPS was $990{\mu}g/ml$. We found that orally administered Ojeok-san significantly inhibited tumor metastasis in vivo. In addition, the amounts of IL-4 and GM-CSF in the culture supernatant of Peyer's patch cells were significantly increased compared to the control group. The proliferation of bone marrow cell was significantly up-regulated with Ojeok-san. These results indicate that oral administration of Ojeok-san enhances the secretion of hematopoietic growth factors such as GM-CSF and IL-4 from Peyer's patch cells, and these cytokines also act on modulator of bone marrow cell proliferation. After orally administering Ovalbumin (OVA) with Ojeok-san, IgA induction and Proliferation of peyer's patch cell was up-regulated with Ojeok-san. These results means orally administered Ojeok-san activates intestinal immune system and has an inhibitory effect on tumor metastasis. Conclusions: Orally administered Ojeok-san appears to have considerable activity on the anti-metastasis by activation of immune system.