Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0137

Neural-Cadherin Influences the Homing of Terminally Differentiated Memory CD8 T Cells to the Lymph Nodes and Bone Marrow  

Kim, Kyong Hoon (Department of Pharmacy, Korea University)
Choi, Aryeong (Department of Pharmacy, Korea University)
Kim, Sang Hoon (Department of Pharmacy, Korea University)
Song, Heonju (Department of Pharmacy, Korea University)
Jin, Seohoon (Department of Applied Statistics, Korea University)
Kim, Kyungim (Department of Pharmacy, Korea University)
Jang, Jaebong (Department of Pharmacy, Korea University)
Choi, Hanbyeul (Department of Pharmacy, Korea University)
Jung, Yong Woo (Department of Pharmacy, Korea University)
Abstract
Memory T (TM) cells play an important role in the long-term defense against pathogen reinvasion. However, it is still unclear how these cells receive the crucial signals necessary for their longevity and homeostatic turnover. To understand how TM cells receive these signals, we infected mice with lymphocytic choriomeningitis virus (LCMV) and examined the expression sites of neural cadherin (N-cadherin) by immunofluorescence microscopy. We found that N-cadherin was expressed in the surroundings of the white pulps of the spleen and medulla of lymph nodes (LNs). Moreover, TM cells expressing high levels of killer cell lectin-like receptor G1 (KLRG1), a ligand of N-cadherin, were co-localized with N-cadherin+ cells in the spleen but not in LNs. We then blocked N-cadherin in vivo to investigate whether it regulates the formation or function of TM cells. The numbers of CD127hiCD62Lhi TM cells in the spleen of memory P14 chimeric mice declined when N-cadherin was blocked during the contraction phase, without functional impairment of these cells. In addition, when CD127loKLRG1hi TM cells were adoptively transferred into anti-N-cadherin-treated mice compared with control mice, the number of these cells was reduced in the bone marrow and LNs, without functional loss. Taken together, our results suggest that N-cadherin participates in the development of CD127hiCD62Lhi TM cells and homing of CD127loKLRG1hi TM cells to lymphoid organs.
Keywords
homeostasis; homing; memory CD8 T cells; neural cadherin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hamann, D., Baars, P.A., Rep, M.H., Hooibrink, B., Kerkhof-Garde, S.R., Klein, M.R., and van Lier, R.A. (1997). Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407-1418.   DOI
2 Martin, M.D. and Badovinac, V.P. (2018). Defining memory CD8 T cell. Front. Immunol. 9, 2692.   DOI
3 Matsunaga, M., Hatta, K., and Takeichi, M. (1988). Role of N-cadherin cell adhesion molecules in the histogenesis of neural retina. Neuron 1, 289-295.   DOI
4 Nolz, J.C., Starbeck-Miller, G.R., and Harty, J.T. (2011). Naive, effector and memory CD8 T-cell trafficking: parallels and distinctions. Immunotherapy 3, 1223-1233.   DOI
5 Schenkel, J.M. and Masopust, D. (2014). Tissue-resident memory T cells. Immunity 41, 886-897.   DOI
6 Surh, C.D. and Sprent, J. (2008). Homeostasis of naive and memory T cells. Immunity 29, 848-862.   DOI
7 Zhang, Q. and Lakkis, F.G. (2015). Memory T cell migration. Front. Immunol. 6, 504.   DOI
8 Jung, Y.W., Kim, H.G., Perry, C.J., and Kaech, S.M. (2016). CCR7 expression alters memory CD8 T-cell homeostasis by regulating occupancy in IL-7-and IL-15-dependent niches. Proc. Natl. Acad. Sci. U. S. A. 113, 8278-8283.   DOI
9 Adams, G.B. and Scadden, D.T. (2006). The hematopoietic stem cell in its place. Nat. Immunol. 7, 333-337.   DOI
10 Tessmer, M.S., Fugere, C., Stevenaert, F., Naidenko, O.V., Chong, H.J., Leclercq, G., and Brossay, L. (2007). KLRG1 binds cadherins and preferentially associates with SHIP-1. Int. Immunol. 19, 391-400.   DOI
11 Chacon-Martinez, C.A., Koester, J., and Wickstrom, S.A. (2018). Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development 145, dev165399.   DOI
12 Ahlers, J.D. and Belyakov, I.M. (2010). Memories that last forever: strategies for optimizing vaccine T-cell memory. Blood 115, 1678-1689.   DOI
13 Alimperti, S. and Andreadis, S.T. (2015). CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res. 14, 270-282.   DOI
14 Bevan, M.J. (2011). Memory T cells as an occupying force. Eur. J. Immunol. 41, 1192-1195.   DOI
15 Bouchentouf, M., Forner, K.A., Cuerquis, J., Michaud, V., Zheng, J., Paradis, P., Schiffrin, E.L., and Galipeau, J. (2010). Induction of cardiac angiogenesis requires killer cell lectin-like receptor 1 and α4β7 integrin expression by NK cells. J. Immunol. 185, 7014-7025.   DOI
16 Butcher, E.C. and Picker, L.J. (1996). Lymphocyte homing and homeostasis. Science 272, 60-66.   DOI
17 Chen, S., Lewallen, M., and Xie, T. (2013). Adhesion in the stem cell niche: biological roles and regulation. Development 140, 255-265.   DOI
18 Cyster, J.G. and Schwab, S.R. (2012). Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69-94.   DOI
19 Gartner, A., Fornasiero, E.F., and Dotti, C.G. (2015). Cadherins as regulators of neuronal polarity. Cell Adh. Migr. 9, 175-182.   DOI
20 Goel, A.J., Rieder, M.K., Arnold, H.H., Radice, G.L., and Krauss, R.S. (2017). Niche cadherins control the quiescence-to-activation transition in muscle stem cells. Cell Rep. 21, 2236-2250.   DOI
21 Joshi, N.S., Cui, W., Chandele, A., Lee, H.K., Urso, D.R., Hagman, J., Gapin, L., and Kaech, S.M. (2007). Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281-295.   DOI
22 Mackay, L.K., Rahimpour, A., Ma, J.Z., Collins, N., Stock, A.T., Hafon, M.L., Vega-Ramos, J., Lauzurica, P., Mueller, S.N., Stefanovic, T., et al. (2013). The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294-1301.   DOI
23 Sheridan, B.S. and Lefrancois, L. (2011). Regional and mucosal memory T cells. Nat. Immunol. 12, 485-491.   DOI
24 Hayashi, R., Yamato, M., Sugiyama, H., Sumide, T., Yang, J., Okano, T., Tano, Y., and Nishida, K. (2007). N-Cadherin is expressed by putative stem/progenitor cells and melanocytes in the human limbal epithelial stem cell niche. Stem Cells 25, 289-296.   DOI
25 Hofmann, M. and Pircher, H. (2011). E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proc. Natl. Acad. Sci. U. S. A. 108, 16741-16746.   DOI
26 Jiang, X., Clark, R.A., Liu, L., Wagers, A.J., Fuhlbrigge, R.C., and Kupper, T.S. (2012). Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature 483, 227-231.   DOI
27 Masai, I., Lele, Z., Yamaguchi, M., Komori, A., Nakata, A., Nishiwaki, Y., Wada, H., Tanaka, H., Nojima, Y., Hammerschmidt, M., et al. (2003). N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development 130, 2479-2494.   DOI
28 Jung, Y.W., Rutishauser, R.L., Joshi, N.S., Haberman, A.M., and Kaech, S.M. (2010). Differential localization of effector and memory CD8 T cell subsets in lymphoid organs during acute viral infection. J. Immunol. 185, 5315-5325.   DOI
29 Karpowicz, P., Willaime-Morawek, S., Balenci, L., DeVeale, B., Inoue, T., and van der Kooy, D. (2009). E-Cadherin regulates neural stem cell self-renewal. J. Neurosci. 29, 3885-3896.   DOI
30 Li, H., Daculsi, R., Grellier, M., Bareille, R., Bourget, C., and Amedee, J. (2010). Role of neural-cadherin in early osteoblastic differentiation of human bone marrow stromal cells cocultured with human umbilical vein endothelial cells. Am. J. Physiol. Cell Physiol. 299, C422-C430.   DOI
31 Baeyens, A., Fang, V., Chen, C., and Schwab, S.R. (2015). Exit strategies: S1P signaling and T cell migration. Trends Immunol. 36, 778-787.   DOI
32 Crane, G.M., Jeffery, E., and Morrison, S.J. (2017). Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573-590.   DOI
33 Masopust, D. and Picker, L.J. (2012). Hidden memories: frontline memory T cells and early pathogen interception. J. Immunol. 188, 5811-5817.   DOI
34 Morrison, S.J. and Scadden, D.T. (2014). The bone marrow niche for haematopoietic stem cells. Nature 505, 327-334.   DOI
35 Soncin, F. and Ward, C.M. (2011). The function of e-cadherin in stem cell pluripotency and self-renewal. Genes (Basel) 2, 229-259.   DOI
36 Mueller, S.N. and Mackay, L.K. (2016). Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 16, 79-89.   DOI
37 Park, S.M., Do-Thi, V.A., Lee, J.O., Lee, H., and Kim, Y.S. (2020). Interleukin-9 inhibits lung metastasis of melanoma through stimulating anti-tumor M1 macrophages. Mol. Cells 43, 479-490.   DOI
38 Sallusto, F., Lenig, D., Forster, R., Lipp, M., and Lanzavecchia, A. (1999). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708-712.   DOI
39 Tanchot, C., Lemonnier, F.A., Perarnau, B., Freitas, A.A., and Rocha, B. (1997). Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057-2062.   DOI
40 Watt, F.M. and Hogan, B.L. (2000). Out of Eden: stem cells and their niches. Science 287, 1427-1430.   DOI
41 Wilson, A. and Trumpp, A. (2006). Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 6, 93-106.   DOI
42 Zhao, M., Tao, F., Venkatraman, A., Li, Z., Smith, S.E., Unruh, J., Chen, S., Ward, C., Qian, P., Perry, J.M., et al. (2019). N-cadherin-expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells. Cell Rep. 26, 652-669.e6.   DOI
43 Topham, D.J. and Reilly, E.C. (2018). Tissue-resident memory CD8(+) T cells: from phenotype to function. Front. Immunol. 9, 515.   DOI
44 Choi, H., Song, H., and Jung, Y.W. (2020). The roles of CCR7 for the homing of memory CD8+ T cells into their survival niches. Immune Netw. 20, e20.   DOI
45 Derycke, L.D. and Bracke, M.E. (2004). N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int. J. Dev. Biol. 48, 463-476.   DOI