• Title/Summary/Keyword: bone collagen synthesis

Search Result 76, Processing Time 0.029 seconds

The Effect of Dried Roots of Rehmannia glutinosa Extract on Osteoblast in Rat Fetus Calvarial Cells (건지황(乾地黃) 추출물이 Rat fetus 두개골로부터 분리한 조골세포에 미치는 영향)

  • Im, Kyu-Jung;Choi, Kyung-Hee;Jung, Eun-Hye;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.26 no.3
    • /
    • pp.33-43
    • /
    • 2013
  • Objectives: Osteoporosis is characterized by bone loss and morbidity with osteoporotic fracture. In this study, the author aimed to evaluate the effect of dried roots of Rehmannia glutinosa extract (RGE) on osteoblast proliferation in murine calvarial cells. Methods: The osteoblast separated from murine calvariae was cultivated for 6 days and evaluated the cell function. After the addition of RGE on the culture medium, we determined the effect of RGE on the cell viability, cell proliferation, protein synthesis, alkaline phosphatase activity, collagen synthesis and calcified nodule formation of the cultivated osteoblast. Results: The results were summarized as follows. 1. RGE did not change the survival rate of rat calvarial osteoblast. 2. RGE increased the proliferation of rat calvarial osteoblast. 3. RGE increased ALP activity of rat calvarial osteoblast., 4. RGE slightly affected protein synthesis of rat calvarial osteoblast. 5. RGE increased collagen synthesis of rat calvarial osteoblast. 6. RGE slightly affected calcified nodule formation of rat calvarial osteoblast. Conclusions: From these results, it is concluded that RG might improve the osteoporosis resulted from augmentation of osteoblast proliferation.

The effects of calcium sulfate on periodontal ligament cells (Calcium sulfate제재가 치주인대세포에 미치는 영향)

  • Lee, Jun-Ho;Kim, So-Young;Choi, Seong-Ho;Chai, jung-Kiu;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.2
    • /
    • pp.235-247
    • /
    • 1998
  • Calcium sulfate has a long history of medical use as an implant material. The biocompatibiliry of the material has been clearly established. Bone ingrowth concomitant with resorption occurs rapidly with efficient conduction of bone from particle to particle. Calcium sulfate also has a potential for functioning as a good bamer membrane. The purpose of this study was to compare the biocompatibility of different types of calcium sulfate grafting materials including an expelimental calcium sulfate compound on periodontal ligament cells in vitro as a preliminary test towards the development of a more convenient and useful form of grafting material which could promote regeneration of periodontal tissue. Human periodontal ligament cells were collected from the premolar teeth extracted for orthodontic treatment. cells were cultured in a.MEM culture medium containing 20% FBS, at $37^{\circ}C$ and 100% humidity, in a 5% CO2 incubator. Cells were cultured into 96 well culture plate $1{\times}104$ cells per well with $\alpha$-MEM and incubated for 24 hours. After discarding the medium, those cells were cultured in $\alpha$-MEM contained with 10% FBS alone (control group), in medcal-grade calcium sulfate(MGCS group), in plaster(plaster group), experimental calcium sulfate paste(CS paste group) for 1, 2, 3 day respectively. And then each group was characterized by examining of the cell counting, MTI assay, collagen synthesis. The results \vere as follows. 1. In the analysis of cell proliferation by cell counting, both medical-grdde calcium sulfate group and plaster group showed no stastically significant difference at day 1, 2, 3 accept for plaster group at day 1 compared to control group, but there was stastically significant difference between CS paste group and all other groups at day 1, 2, 3(P<0.05). 2. In the analysis of cytotoxicity by MIT assay, both medical-grade calcium sJlfate group and plaster group showed no stastically significant difference compared to control group at day 1, 2, 3 but there was stastically significant difference between CS paste group and all other groups at day 1, 2, 3(P<0.OS). 3. In the analysis of collagen synthesis by immunoblotting assay, high level was detected for medical-grade calcium sulfate group and plaster group at day 1, 2, 3 compared to CS paste group. On the basis of these results, medical-grade calcium sulfate and plaster was shown to possess biocompatibility whereas the CS paste had unfavourable outcome. This observation shows a need for modification of the materials contained in calcium sulfate paste.

  • PDF

Use of Platelet-Rich Fibrin in Oral and Maxillofacial Surgery

  • Jeong, Kyung-In;Kim, Su-Gwan;Oh, Ji-Su
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.2
    • /
    • pp.155-161
    • /
    • 2012
  • Platelet-rich fibrin (PRF) is a strong but flexible fibrin including a enrich platelet which contain growth factors and cytokines. PRF can be made very simply and requires no artificial additives unlike platelet-rich plasma. While PRF is remodeled and released in the tissue, this induces cell growth, vascularization, collagen synthesis, osteoblast differentiation and an anti-inflammatory reaction. Taking advantage of these functions, PRF can stimulate regeneration of bone and soft tissue in a diverse number of ways during the course of hemostasis, wound coverage, preservation, and reconstruction of alveolar bone. Moreover, the use of PRF to improve bone regeneration has become a recent technique in implantology. In this study, through a literature review of PRF's existing clinical applications, we classified a range of potential PRF oral and maxillofacial surgery applications including preservation of extraction sockets, guided bone graft, sinus lift, dressing and periodontal treatment. This trial gave us chance to confirm the usefulness of PRF. Recently, updated clinical studies results concerning skin and tendon wound healing have become available. These results suggest that the usage of RPF will gradually expand.

ON THE BONE TISSUE REACTION TO IMPLANTS WITH DIFFERENT SURFACE TREATMENT METHODS (임플랜트 표면 처리 방법에 따른 골조직 반응에 대한 연구)

  • Kim, Yong-Jae;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.71-84
    • /
    • 2007
  • Statement of problem: Implant surface characteristics plays an important role in clinical success and many studies have been made for improvement of success by changing surface roughness. Purpose: Appropriate increase of surface roughness increases the activity of osteoblast and enhance contact and retention between bone and implant. Material and method- Machined, SLA and RBM surface implants, which are the most commonly used implants were implanted into the tibia of rabbits and after 1 week, 4 weeks, 8 weeks and 12 weeks there were histologic and histomorphometric analysis and study for bone gradient and change of Ca/P ratio using EDS(Energy Dispersive X-ray Spectroscope). Results: Comparison of bone-implant contact showed no significant difference among each implant. In comparison of bone area rates, SLA showed higher value with significant difference at 1 week and 4 weeks, and SLA and RBM at 8 weeks than Machined implant (p<0.05). In analysis of bone constituents with EDS, titanium was specifically detected in new bones and the rates were constant by surface treatment method or period. In case of Ca/P ratio, according to surface treatment method, each group showed significant difference. Lots of old bone fragments produced during implantation remained on the rough surface of RBM implant surface and each group showed histological finding with active synthesis of collagen fibers until 12 weeks. In transmission electronic microscopic examination of sample slice after elapse of twelve weeks, tens nm of borderline (lamina limitans like dense line)was seen to contact the bone, on the interface between bone and implant. Conclusion: SLA and RBM implant with rough surface shows better histomorphometrical result and the trend of prolonged bone formation and maturation in comparison with Machined implant. In addition, implant with rough surface seems to be helpful in early stage bone formation due to remaining of old bone fragments produced in implantation. From the results above, it is considered to be better to use implant with rough surface in implantation.

The effects of chitosan on the human periodontal ligament fibroblasts in vitro (키토산이 치주인대 섬유아세포에 미치는 영향)

  • Paik, Jeong-Won;Lee, Hyun-jung;Yoo, Yun-Jung;Cho, Kyoo-Sung;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.823-832
    • /
    • 2001
  • Periodontal therapy has dealt primarily with attempts at arresting progression of disease, however, more recent techniques have focused on regenerating the periodontal ligament having the capacity to regenerate the periodontium. The effect of chitosan(poly-N-acetyl glucosaminoglycan), a carbohydrate biopolymer extracted from chitin, on periodontal ligament regeneration is of particular interest. The purpose of this study was to evaluate the effect of chitosan on the human periodontal ligament fibroblasts(hPDLFs) in vitro, with special focus on their proliferative properties by M'IT assay, the synthesis of type I collagen by reverse transcription-polymerase chain reaction(RT-PCR) and the activity of alkaline phosphatase(ALP). Fibroblast populations were obtained from individuals with a healthy periodontium and cultured with ${\alpha}MEM$ as the control group. The experimental groups were cultured with chitosan in concentration of 0.01,0.1, 1,2mg/ml. The results are as follows; 1. Chitosan-induced proliferative responses of hPDLFs reached a plateau at the concentration of O.lmg/ml(p<0.05). 2. When hPDLFs were stimulated with 0.lmg/ml chitosan, mRNA expression of type I collagen was up-regulated. 3. When hPDLFs were stimulated with 0.lmg/ml chitosan, ALP activity was significantly up-regulated(p<0.05). In summary, chitosan(0.lmg/ml) enhanced the type I collagen synthesis in the early stage, and afterwards, facilitated differentiation into osteogenic cells. The results of this in vitro experiment suggest that chitosan potentiates the differentiation of osteoprogenitor cells and may facilitate the formation of bone.

  • PDF

Low-Molecular-Weight Collagen Peptide Ameliorates Osteoarthritis Progression through Promoting Extracellular Matrix Synthesis by Chondrocytes in a Rabbit Anterior Cruciate Ligament Transection Model

  • Lee, Mun-Hoe;Kim, Hyeong-Min;Chung, Hee-Chul;Kim, Do-Un;Lee, Jin-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1401-1408
    • /
    • 2021
  • This study examined whether the oral administration of low-molecular-weight collagen peptide (LMCP) containing 3% Gly-Pro-Hyp with >15% tripeptide (Gly-X-Y) content could ameliorate osteoarthritis (OA) progression using a rabbit anterior cruciate ligament transection (ACLT) model of induced OA and chondrocytes isolated from a patient with OA. Oral LMCP administration (100 or 200 mg/kg/day) for 12 weeks ameliorated cartilage damage and reduced the loss of proteoglycan compared to the findings in the ACLT control group, resulting in dose-dependent (p < 0.05) improvements of the OARSI score in hematoxylin & eosin (H&E) and Safranin O staining. In micro-computed tomography analysis, LMCP also significantly (p < 0.05) suppressed the deterioration of the microstructure in tibial subchondral bone during OA progression. The elevation of IL-1β and IL-6 concentrations in synovial fluid following OA induction was dose-dependently (p < 0.05) reduced by LMCP treatment. Furthermore, immunohistochemistry illustrated that LMCP significantly (p < 0.05) upregulated type II collagen and downregulated matrix metalloproteinase-13 in cartilage tissue. Consistent with the in vivo results, LMCP significantly (p < 0.05) increased the mRNA expression of COL2A1 and ACAN in chondrocytes isolated from a patient with OA regardless of the conditions for IL-1β induction. These findings suggest that LMCP has potential as a therapeutic treatment for OA that stimulates cartilage regeneration.

Aloe-Emodin Induces Chondrogenic Differentiation of ATDC5 Cells via MAP Kinases and BMP-2 Signaling Pathways

  • Yang, Ming;Li, Liang;Heo, Seok-Mo;Soh, Yunjo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.395-401
    • /
    • 2016
  • Endochondral bone formation is the process by which mesenchymal cells condense into chondrocytes, which are ultimately responsible for new bone formation. The processes of chondrogenic differentiation and hypertrophy are critical for bone formation and are therefore highly regulated. The present study was designed to investigate the effect of aloe-emodin on chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Aloe-emodin treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. ATDC5 cells were treated with aloe-emodin and stained with alcian blue. Compared with the control cells, the ATDC5 cells showed more intense alcian blue staining. This finding suggested that aloe-emodin induced the synthesis of matrix proteoglycans and increased the activity of alkaline phosphatase. Aloe-emodin also enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, BSP and RunX2 in a time-dependent manner. Furthermore, examination of the MAPK signaling pathway showed that aloe-emodin increased the activation of extracellular signal-regulated kinase (ERK), but had no effect on p38 and c-jun N-terminal kinase (JNK). Aloe-emodin also enhanced the protein expression of BMP-2 in a time-dependent manner. Thus, these results showed that aloe-emodin exhibited chodromodulating effects via the BMP-2 or ERK signaling pathway. Aloe-emodin may have potential future applications for the treatment of growth disorders.

The Effects of Platelet-Rich Fibrin on Osteoblast Proliferation and Differentiation: Effects of Platelet-Rich Fibrin on Osteoblasts (혈소판 농축 섬유소가 골모세포 증식과 분화에 미치는 영향)

  • Jung, Hae-Su;Bae, Hyun-Sook;Hong, Ki Seok
    • Journal of dental hygiene science
    • /
    • v.13 no.2
    • /
    • pp.158-164
    • /
    • 2013
  • The most frequently encountered problems at fixture-implantation sites are lack of adequate bone and proximity to anatomic structures. It is generally accepted that growth factors play an essential role in the healing process and tissue formation, and they have become the focus of grafting materials research. The granules in platelets contain high concentrations of various growth factors. In particular, platelet-rich fibrin (PRF) is a second-generation platelet concentrate that allows the production of fibrin membranes enriched with platelets and growth factors from an anticoagulant-free blood harvest. This study investigated the in vitro effects of PRF on osteoblasts, in terms of the key cellular functions, and especially the effects on two growth factors, the homodimer of platelet-derived growth factor subunit B (BPDGF-BB) and transforming growth factor (TGF)-${\beta}1$, which are associated with wound healing and regeneration (i.e., proliferation and differentiation). The following parameters were investigated: PDGF-BB and TGF-${\beta}1$ levels in PRF, cell viability, alkaline phosphatase (ALP) activity, type 1 collagen synthesis, and the expressions of osteoblast differentiation markers (ALP and runt-related transcription factor 2) and bone matrix proteins (type 1 collagen). The release of autologous growth factors from PRF was maintained for a reasonable period of time, and exerted positive effects on the proliferation and differentiation of osteoblasts. The use of PRF thus appears to be a promising method for enhancing bone healing and remodeling.

ROS Scavenging Effect and Cell Viability of Opuntia humifusa Extract on Osteoblastic MC3T3-E1 Cells (천년초 추출물이 조골세포의 증식과 ROS소거능에 미치는 영향)

  • Hwang, Hyun-Jung;Jung, Bok-Mi;Kim, Mi-Hyang
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1752-1760
    • /
    • 2011
  • In this study, the effect of the Opuntiahumifusa extracts on proliferation, alkaline phosphatase (ALP) activity, collagen synthesis and ROS level of a cell was investigated using an osteoblast. Opuntiahumifusawas separated intoOpuntiahumifusapeel (OH-P), seed (OH-Se) and stem (OH-St).These were subjected to extraction by using hot water and ethanol. The proliferation of the MC3T3-E1 osteoblastic cells that were treated with OH-Se water extract were increased by approximately 120%. Regarding the effects of OH-Se on ALP activity, the $50{\mu}g/ml$ ethanol extract group showed the highest activity. The synthesis of collagen increased significantly in response to treatment with OH-Se water extract. The ROS scavenging effects of Opuntiahumifusawere investigated for involvement of oxidativedamage, cell culture and staining. Also, when OH-Se water extract $100{\mu}g/ml$ was added, the ROS level decreased by 54%. These results indicate that Opuntiahumifusa extracts have an anabolic effect on bone through the promotion of osteoblastic differentiation, suggesting that it could be used for the treatment of common metabolic bone diseases.

Effects of Deer Antler Water Extract(Pilose Antler of Cervus Korean TEMMINCK Var. Mantchuricus Sinhoe) on Chondrocytes

  • Kim, Moo-Jin;Lee, Seung-Deok;Kim, Kyung-Ho;Byun, Hyuk;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.103-111
    • /
    • 2006
  • Objectives : Deer antler Water Extract(DAE), prepared from the pilose antler of Cervus korean TEMMINCK var. mantchuricus Swinhoe (Nokyong), a traditional immuno-suppressive and immuno-activating Korean herbal-acupuncture, is thought to play an important role in human bone remodeling. Methods : To determine whether DAE can induce the differentiation of resting zone chondrocytes(RC) or not, confluent cell cultures were pretreated for 24, 36, 48, 72, and 120hrs with DAE. At the end of pretreatment, the media were replaced with new media containing $10^{-10}{\sim}10^{-8}M\;1,25-(OH)_2D_3$ and the cells incubated for an additional 24hrs. Results : This second treatment was chosen because prior studies had shown that only the more mature growth zone chondrocytes(GC) respond to this vitamin $D_3$ metabolite. The effect of DAE pretreatment on cell maturation was confirmed by measuring alkaline phosphatase (ALPase)-specific activity. Changes in matrix protein synthesis were examined by measuring collagen synthesis, as well as $^{35}SO_4$ incorporation into proteoglycans. When RC cells were pretreated for 120h with DAE, treatment with $1,25-(OH)_2D_3$ caused a dose-dependent increase in ALPase-specific activity and collagen synthesis, however, the proteoglycan production was not affected. RC cells pretreated with $1,25-(OH)_2D_3$ responded like RC cells that had not received any pretreatment. Conclusion : These results indicate that DAE directly regulates the maturation of RC chondrocytes into GC chondrocytes. Therefore it was indicated that DAE may play a significant role in regulating chondrocyte maturation during endochondral ossification.

  • PDF