DOI QR코드

DOI QR Code

Aloe-Emodin Induces Chondrogenic Differentiation of ATDC5 Cells via MAP Kinases and BMP-2 Signaling Pathways

  • Yang, Ming (Department of Periodontology, School of Dentistry, Chonbuk National University) ;
  • Li, Liang (Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University) ;
  • Heo, Seok-Mo (Department of Periodontology, School of Dentistry, Chonbuk National University) ;
  • Soh, Yunjo (Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University)
  • Received : 2016.01.28
  • Accepted : 2016.05.24
  • Published : 2016.07.01

Abstract

Endochondral bone formation is the process by which mesenchymal cells condense into chondrocytes, which are ultimately responsible for new bone formation. The processes of chondrogenic differentiation and hypertrophy are critical for bone formation and are therefore highly regulated. The present study was designed to investigate the effect of aloe-emodin on chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Aloe-emodin treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. ATDC5 cells were treated with aloe-emodin and stained with alcian blue. Compared with the control cells, the ATDC5 cells showed more intense alcian blue staining. This finding suggested that aloe-emodin induced the synthesis of matrix proteoglycans and increased the activity of alkaline phosphatase. Aloe-emodin also enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, BSP and RunX2 in a time-dependent manner. Furthermore, examination of the MAPK signaling pathway showed that aloe-emodin increased the activation of extracellular signal-regulated kinase (ERK), but had no effect on p38 and c-jun N-terminal kinase (JNK). Aloe-emodin also enhanced the protein expression of BMP-2 in a time-dependent manner. Thus, these results showed that aloe-emodin exhibited chodromodulating effects via the BMP-2 or ERK signaling pathway. Aloe-emodin may have potential future applications for the treatment of growth disorders.

Keywords

References

  1. Akiyama, H., Shukunami, C., Nakamura, T. and Hiraki, Y. (2000) Differential expressions of BMP family genes during chondrogenic differentiation of mouse ATDC5 cells. Cell Struct. Funct. 25, 195-204. https://doi.org/10.1247/csf.25.195
  2. Bobick, B. E., Thornhill, T. M. and Kulyk, W. M. (2007) Fibroblast growth factors 2, 4, and 8 exert both negative and positive effects on limb, frontonasal, and mandibular chondrogenesis via MEKERK activation. J. Cell Physiol. 211, 233-243. https://doi.org/10.1002/jcp.20923
  3. Choi, H. J., Nepal, M., Park, Y. R., Lee, H. K., Oh, S. R. and Soh, Y. (2011) Stimulation of chondrogenesis in ATDC5 chondroprogenitor cells and hypertrophy in mouse by Genkwadaphnin. Eur. J. Pharmacol. 655, 9-15. https://doi.org/10.1016/j.ejphar.2011.01.012
  4. Davis, R. J. (2000) Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252. https://doi.org/10.1016/S0092-8674(00)00116-1
  5. Huang, Q., Shen, H. M. and Ong, C. N. (2005) Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Cell. Mol. Life Sci. 62, 1167-1175. https://doi.org/10.1007/s00018-005-5050-2
  6. Hu, B. Y., Zhang, H., Meng, X. L., Wang, F. and Wang, P. (2014) Aloeemodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages. J. Ethnopharmacol. 153, 846-853. https://doi.org/10.1016/j.jep.2014.03.059
  7. Jiang, C., Ma, P., Ma, B., Wu, Z., Qiu, G., Su, X., Xia, Z., Ye, Z. and Wang, Y. (2015) Plasma-derived fibronectin stimulates chondrogenic differentiation of human subchondral cortico-spongious progenitor cells in late-stage osteoarthritis. Int. J. Mol. Sci. 16, 19477-19489. https://doi.org/10.3390/ijms160819477
  8. Junttila, M. R., Li, S. P. and Westermarck, J. (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J. 22, 954-965. https://doi.org/10.1096/fj.06-7859rev
  9. Komatsu, K., Nagayama, Y., Tanaka, K., Ling, Y., Basnet, P. and Meselhy, M. R. (2006) Development of a high performance liquid chromatographic method for systematic quantitative analysis of chemical constituents in rhubarb. Chem. Pharm. Bull. 54, 941-947. https://doi.org/10.1248/cpb.54.941
  10. Kim, J. Y., Cheon, Y. H., Kwak, S. C., Baek, J. M., Yoon, K. H., Lee, M. S. and Oh, J. (2014) Emodin regulates bone remodeling by inhibiting osteoclastogenesis and stimulating osteoblast formation. J. Bone Miner. Res. 29, 1541-1553. https://doi.org/10.1002/jbmr.2183
  11. Kim, M. S., Park, M. J., Kim, S. J., Lee, C. H., Yoo, H., Shin, S. H., Song, E. S. and Lee, S. H. (2005) Emodin suppresses hyaluronic acid-induced MMP-9 secretion and invasion of glioma cells. Int. J. Oncol. 27, 839-846.
  12. Kim, Y. J., Lee, M. H., Wozney, J. M., Cho, J. Y. and Ryoo, H. M. (2004) Bone morphogenetic protein-2-induced alkaline phosphatase expression is stimulated by Dlx5 and repressed by Msx2. J. Biol. Chem. 279. 50773-50780. https://doi.org/10.1074/jbc.M404145200
  13. Kronenberg, H. M. (2003). Developmental regulation of the growth plate. Nature 423, 332-336. https://doi.org/10.1038/nature01657
  14. Kuang, D., Zhao, X., Xiao, G., Ni, J., Feng, Y., Wu, R. and Wang, G. (2008) Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res. Cardiol. 103, 265-273. https://doi.org/10.1007/s00395-007-0690-z
  15. Lin, J. G., Chen, G. W., Li, T. M., Chouh, S. T., Tan, T. W. and Chung, J. G. (2006) Aloe-emodin induces apoptosis in T24 human bladder cancer cells through the p53 dependent apoptotic pathway. J. Urol. 175, 343-347. https://doi.org/10.1016/S0022-5347(05)00005-4
  16. Longobardi, L., O'Rear, L., Aakula, S., Johnstone, B., Shimer, K., Chytil, A., Horton, W. A., Moses, H. L. and Spagnoli, A. (2006) Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J. Bone Miner. Res. 21, 626-636.
  17. Mauck, R.L., Yuan, X. and Tuan, R. S. (2006) Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthr. Cartil. 14, 179-189. https://doi.org/10.1016/j.joca.2005.09.002
  18. Mijatovic, S., Maksimovic-Ivanic, D., Radovic, J., Miljkovic, D., Kaludjerovic, G. N., Sabo, T. J. and Trajkovic, V. (2005) Aloe-emodin decreases the ERK-dependent anticancer activity of cisplatin. Cell. Mol. Life Sci. 62, 1275-1282. https://doi.org/10.1007/s00018-005-5041-3
  19. Mueller, S. O., Stopper, H. and Dekant, W. (1998) Biotransformation of the anthraquinones emodin and chrysophanol by cytochrome P450 enzymes. Bioactivation to genotoxic metabolites. Drug Metab. Dispos. 26, 540-546.
  20. Nakase, T., Miyaji, T., Tomita, T., Kaneko, M., Kuriyama, K., Myoui, A., Sugamoto, K., Ochi, T. and Yoshikawa, H. (2003) Localization of bone morphogenetic protein-2 in human osteoarthritic cartilage and osteophyte. Osteoarthr. Cartil. 11, 278-284. https://doi.org/10.1016/S1063-4584(03)00004-9
  21. Nesslany, F., Simar-Meintieres, S., Ficheux, H. and Marzin, D. (2009) Aloe-emodin-induced DNA fragmentation in the mouse in vivo comet assay. Mutat. Res. 678, 13-19. https://doi.org/10.1016/j.mrgentox.2009.06.004
  22. Oh, C. D., Chang, S. H., Yoon, Y. M., Lee, S. J., Lee, Y. S., Kang, S. S. and Chun, J. S. (2000) Opposing role of mitogen-activated protein kinase subtypes, Erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem. 275, 5613-5619. https://doi.org/10.1074/jbc.275.8.5613
  23. Otsuki, S., Hanson, S. R., Miyaki, S., Grogan, S. P., Kinoshita, M., Asahara, H., Wong C. H. and Lotz, M. K. (2010) Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways. Proc. Natl. Acad. Sci. U.S.A. 107, 10202-10207. https://doi.org/10.1073/pnas.0913897107
  24. Pass, C., MacRae, V. E., Ahmed, S. F. and Farquharson, C. (2009) Inflammatory cytokines and the GH/IGF-I axis: novel actions on bone growth. Cell Biochem. Funct. 27, 119-127. https://doi.org/10.1002/cbf.1551
  25. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S. and Marshak, D. R. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147. https://doi.org/10.1126/science.284.5411.143
  26. Roberts, P. J. and Der, C. J. (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310. https://doi.org/10.1038/sj.onc.1210422
  27. Shukunami, C., Ishizeki, K., Atsumi, T., Ohta, Y., Suzuki, F. and Hiraki, Y. (1997) Cellular hypertrophy and calcification of embryonal carcinoma-derived chondrogenic cell line ATDC5 in vitro. J. Bone Miner. Res. 12, 1174-1188. https://doi.org/10.1359/jbmr.1997.12.8.1174
  28. Snelling, S. J., Hulley, P. A. and Loughlin, J. (2010) BMP5 activates multiple signaling pathways and promotes chondrogenic differentiation in the ATDC5 growth plate model. Growth Factors 28, 268-279. https://doi.org/10.3109/08977191003752296
  29. van Beuningen, H. M., Glansbeek, H. L., van der Kraan, P. M. and van den Berg, W. B. (1988) Differential effects of local application of BMP-2 or TGF-${\beta}1$ on both articular cartilage composition and osteophyte formation. Osteoarthr. Cartil. 6, 306-317.
  30. Wakitani, S., Goto, T., Young, R. G., Mansour, J. M., Goldberg, V. M. and Caplan, A. I. (1998) Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng. 4, 429-444. https://doi.org/10.1089/ten.1998.4.429
  31. Yoon, B. S. and Lyons, K. M. (2004) Multiple functions of BMPs in chondrogenesis. J. Cell. Biochem. 93, 93-103. https://doi.org/10.1002/jcb.20211
  32. Zuscik, M. J., Hilton, M. J., Zhang, X. P., Chen, D. and O'Keefe, R. J. (2008) Regulation of chondrogenesis and chondrocyte differentiation by stress. J. Clin. Invest. 118, 429-438. https://doi.org/10.1172/JCI34174

Cited by

  1. Aloe-emodin (AE) nanoparticles suppresses proliferation and induces apoptosis in human lung squamous carcinoma via ROS generation in vitro and in vivo vol.490, pp.3, 2017, https://doi.org/10.1016/j.bbrc.2017.06.084
  2. Anti-proliferation and anti-metastasis effect of barbaloin in non-small cell lung cancer via inactivating p38MAPK/Cdc25B/Hsp27 pathway vol.38, pp.2, 2017, https://doi.org/10.3892/or.2017.5760
  3. Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology vol.16, pp.4, 2017, https://doi.org/10.3892/mmr.2017.7149
  4. Strong binding active constituents of phytochemical to BMPR1A promote bone regeneration: In vitro, in silico docking, and in vivo studies pp.00219541, 2019, https://doi.org/10.1002/jcp.28121
  5. Anticancer activities of phytoconstituents and their liposomal targeting strategies against tumor cells and the microenvironment vol.154, pp.None, 2016, https://doi.org/10.1016/j.addr.2020.05.006
  6. Aloe‐emodin: A review of its pharmacology, toxicity, and pharmacokinetics vol.34, pp.2, 2016, https://doi.org/10.1002/ptr.6532
  7. Inhibition of cartilage degeneration and subchondral bone deterioration by Spinacia oleracea in human mimic of ACLT-induced osteoarthritis vol.11, pp.9, 2020, https://doi.org/10.1039/d0fo01125h