• Title/Summary/Keyword: bone/vessel segmentation

Search Result 4, Processing Time 0.016 seconds

A Fast Lower Extremity Vessel Segmentation Method for Large CT Data Sets Using 3-Dimensional Seeded Region Growing and Branch Classification

  • Kim, Dong-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.348-354
    • /
    • 2008
  • Segmenting vessels in lower extremity CT images is very difficult because of gray level variation, connection to bones, and their small sizes. Instead of segmenting vessels, we propose an approach that segments bones and subtracts them from the original CT images. The subtracted images can contain not only connected vessel structures but also isolated vessels, which are very difficult to detect using conventional vessel segmentation methods. The proposed method initially grows a 3-dimensional (3D) volume with a seeded region growing (SRG) using an adaptive threshold and then detects junctions and forked branches. The forked branches are classified into either bone branches or vessel branches based on appearance, shape, size change, and moving velocity of the branch. The final volume is re-grown by collecting connected bone branches. The algorithm has produced promising results for segmenting bone structures in several tens of vessel-enhanced CT image data sets of lower extremities.

Automatic Segmentation of Vertebral Arteries in Head and Neck CT Angiography Images

  • Lee, Min Jin;Hong, Helen
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.2
    • /
    • pp.67-70
    • /
    • 2015
  • We propose an automatic vessel segmentation method of vertebral arteries in CT angiography using combined circular and cylindrical model fitting. First, to generate multi-segmented volumes, whole volume is automatically divided into four segments by anatomical properties of bone structures along z-axis of head and neck. To define an optimal volume circumscribing vertebral arteries, anterior-posterior bounding and side boundaries are defined as initial extracted vessel region. Second, the initial vessel candidates are tracked using circular model fitting. Since boundaries of the vertebral arteries are ambiguous in case the arteries pass through the transverse foramen in the cervical vertebra, the circle model is extended along z-axis to cylinder model for considering additional vessel information of neighboring slices. Finally, the boundaries of the vertebral arteries are detected using graph-cut optimization. From the experiments, the proposed method provides accurate results without bone artifacts and eroded vessels in the cervical vertebra.

Segmentation of Arterial Vascular Anatomy around the Stomach based on the Region Growing Based Method

  • Kang, Jiwoo;Kim, Doyoung;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.75-79
    • /
    • 2014
  • Purpose The region growing has a critical problem that it often extract vessels with unexpected objects such as a bone which has a similar intensity characteristics to the vessel. We propose the new method to extract arterial vascular anatomy around the stomach from the CTA volume without the post-processing. Materials and Methods Our method, which is also based on the region growing, requires the two seed points from the use. I automatically extracts perigastric arteries using the adaptive region growing method and it does not need any post-processing. Results The three region growing based methods are used to extract perigastric arteries - the conventional region growings with restrict and loose thresholds each and the proposed method. The 3D visualization from the result of our method shows our method extracted the all required arteries for gastric surgery. Conclusion By extracting perigastric arteries using the proposed method, over-segmentation problem that unexpected anatomical objects such as a rib or backbone are also segmented does not occurs anymore. The proposed method does not need to sensitively determine the thresholds of the similarity function. By visualizing the result, the preoperative simulation of arterial vascular anatomy around the stomach can be possible.

New Seed Detection by Shape Analysis for Construction of Vascular Structures

  • Shim, Hack-Joon;Lee, Hyun-Joon;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.427-433
    • /
    • 2010
  • Although tracking methods are efficient and popular for vessel segmentation, they require a seed to initiate an instance of tracking. In this paper, a new method to detect new seeds for tracking of arterial segments from CT angiography (CTA) and to construct a vascular structure is proposed. The proposed algorithm is based on shape analysis of connected components in a volume of interest around a vessel segment which was already extracted by tracking. The eigenvalues of the covariance matrix are used as the shape features for detection. The experimental results on actual clinical data showed that the results totally revealed the arterial tree not hindered by bone or veins. In visual comparison to a method which combines registration and subtraction of both pre-contrast and post-contrast CT volumes, the proposed method produced comparable results to the reference method and were confirmed of its feasibility for clinical use of reducing the cost and burden of patients.