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Abstract

Segmenting vessels in lower extremity CT images is very difficult because of gray level variation, connection to bones, and their small sizes.
Instead of segmenting vessels, we propose an approach that segments bones and subtracts them from the original CT images. The subtracted
images can contain not only connected vessel structures but also isolated vessels, which are very difficult to detect using conventional vessel
segmentation methods. The proposed method initially grows a 3-dimensional (3D) volume with a seeded region growing (SRG) using an
adaptive threshold and then detects junctions and forked branches. The forked branches are classified into either bone branches or vessel
branches based on appearance, shape, size change, and moving velocity of the branch. The final volume is re-grown by collecting connected
bone branches. The algorithm has produced promising results for segmenting bone structures in several tens of vessel-enhanced CT image

data sets of lower extremities.
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| . INTRODUCTION

essels in lower extremity need to be examined for

diagnosis of vein anomaly. Although the vessels can be
enhanced using contrast enhanced media, it is still very
difficult to examine the vessels because bones such as the
pelvis, femur, fibula, and tibia block some parts of vessels.
Thus, vessel segmentation is necessary for visualization of
diagnosis, which is one of the challenging problems in
medical image segmentation because of the large variation in
gray value, inherent connectivity to bones, and the small size
of a vessel. .

This paper proposes a complementary approach that
segments bones and subtracts them for a clear view of all
vessels, including even small isolated vessels and low gray-
value vessels. In order to use the segmentation method as a
routine diagnosis tool, three challenging problems need to be
overcome: leakage due to inherent connection to a vessel,
sensitivity due to a threshold, and efficiency to manage several
hundred CT images in real time. To achieve these goals, we
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have developed a fast low extremity segmentation method
using 3-dimensional (3D) seeded region growing (SRG) and
branch classification.

Previous research on medical image segmentation focuses
mainly on achieving accurate results, and can be classified
into three categories[1}: region growing methods[2-4] such as
SRG, edge-based methods[5-8] such as snakes, and integrated
methods [9-191. Recently, medical knowledge such as shapes
[11-17] and appearance[18-19] has been actively incorporated
to achieve more accurate results, and to segment multiple
objects[14, 19]. Duncan et al. developed a level set method
that provided promising results at the cost of considerable
computing time[14]. The necessity of routine clinical use of
segmentation makes efficiency another important factor for
the segmentation algorithm. Freedman et al.[19] emphasized
this issue and developed a fast segmentation algorithm,
although it may take several tens of seconds if it is applied to a
large image data set of over five hundred. It is necessary to
develop an efficient and accurate approach for routine
diagnosis.

This paper proposes an efficient algorithm that can produce
accurate segmentation results within ten seconds for large
image data sets of 512 x 512 x 500~700 slices. The proposed
algorithm segments only bones by cutting off a vessel branch



at a junction formed by a bone branch and a vessel branch.
Initially, a 3D volume is grown by an SRG method, and
junctions of the 3D volume are detected. For all junctions,
each branch is classified as either a bone branch or a vessel
branch. The classification is determined by appearance, shape,
size change, and velocity of a branch. Finally, a bone volume
is re-grown from a seed point by collecting only connected
bone branches. The details are described in the methods
section. Segmentation results performed in several tens of
large image data sets taken in routine diagnosis are shown in
the results section. This paper is concluded in the final section.

Il. MATERIALS AND METHODS

The original 3D SRG[2-3] grows a volume by collecting
homogencous 3D neighbors of voxels in the volume recursively,
Although the original method produces a result efficiently, it
suffers from leaking to a foreign object because it utilizes only
gray value information in deciding homogeneous voxels. A
single voxel thick channel can cause a large volume of leakage
to a foreign object. The proposed method prevents leaking to a
vessel by detecting and cutting a vessel branch. It consists of
four modules: growing a 3D volume with an adaptive threshold,
detecting junctions, cutting the branch classified as a vessel,
and re-growing a 3D volume to collect a bone segmentation
result.

A. Growing Initial Volume

Growing a volume is performed by a 3D SRG method,
which grows its volume by collecting its homogeneous 3D
neighbors iteratively. The six 3D neighbors consist of
4-connected neighbors in the same slice, one in an upper slice,
and another in a lower slice. The homogeneity of a neighbor is
classified with a gray value. If the value of a neighbor is
greater than a threshold, the neighbor is included as the same
volurne. To accommodate gray-level variability of a bone over
different locations, adaptive thresholds are computed. A
threshold value playing an important role in segmentation
quality is computed by an adaptive threshold method{20]. The
method utilizes an estimate of the gradient magnitude around
the segmented object edge. The threshold maximizing the
average boundary gradient is selected. The maximum average
boundary gradient is approximated by selecting a gray value
having a maximum average gradient in a bounding box
containing an object. The threshold is searched around 1150 of
Hounsfield Units (HU) with a margin of 100 HU,

B. Detecting Junctions
When two objects are connected by parts of their attaching
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Fig. 1. Junction detection Dotted regions represent projected solid regions
from the lower slice

surfaces, the surfaces make junctions where the objects meet.
A cutting plane above the junction makes two separate
regions, while another cutting plane at the junction makes a
single region. Thus, a junction can be detected by detecting
split regions. If a region at a slice is split into more than two
regions at its adjacent slice, those regions form a junction. To
distinguish different regions, segmented regions are labeled at
each slice.

To detect all junctions, every region is checked for whether
it has more than two regions at its upper or lower slices. If all
pixel points inside a region at a slice have more than two
different labels at the adjacent slice, a junction is detected as
shown in Figure 1. All junctions have such splitting branches
although each split branch may have different shape,
direction, and initial position. Once split branch is detected, it
is classified into a vessel or a bone based on the criteria
described in the following section.

C. Cutting Vessel Branches

Junctions can be generated from three cases: attaching two
bones, attaching two vessels, and attaching a bone and a
vessel. Whenever a junction is detected, regions are classified
as either a bone region or a vessel region. The region classified
as a vessel region is marked to prevent a bone from leaking to
a vessel branch. The classification of a region is determined by
appearance, shape, size change, and velocity of the branch
stemming from the region.

A branch, which is a 3D tubular shape, is made with several
connected regions along a moving direction. The moving
direction can be either an upper direction or a lower direction.
When a junction is formed with lower slices, the moving
direction is a lower direction. The current system uses four
slices to make a branch.
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Appearance measures homogeneity of a branch. For computing
the homogeneity of a branch, the homogeneity of a region is
computed as in Equation 1.

(op—o)+w

)

homogeneity = 2

where ¢ 5, o, w are deviation threshold, deviation, and
window width, respectively. If homogeneity is greater than 1,
it is set as 1. If homogeneity is less than 0, it is set as 0.
Deviation threshold is 100, and w is 20. Deviation is computed
by the absolute difference between the mean value and the
gray value of a pixel. The appearance of a branch is an average
of the homogeneity of all regions composing a branch as
described in Equation 2.

S Homogeneity (k)
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where n is mumber of regions composing a branch.
The shape of a branch measures compactness. For each
region, compactness is computed as in Equation 3.
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where m, |, and h are pixel population, width, and height of
a region, respectively. Because a smaller size region of a
vessel tends to have a less round shape than a larger size
region of a vessel, the compactness of a region is weighted by
its size. The shape of a branch is a normalized sum of
compactness of all regions as given by Equation 4.
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where W, is a size weighting factor.

The size change of a branch measures area changes of the
regions composing the branch. An area change is computed by
ratio of the size of a smaller region over that of a larger region
and is normalized as in Equation 5.

r—w,

Areachange = 5)

1— w,
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where r is ratio of the size of a smaller region over that of a
larger region and w, is an offset value with 0.33. If an area
change is less than 0, it is set as 0. The size change of a branch
is a normalized sum of area changes, given by Equation 6.

n-1

kglAfreachange (k) ©

SC(b)=

n—1

where 1 is number of regions composing a branch.
The velocity of a branch is a shift of center points of regions
as in Equation 7.

\/E+ = o) W= u)
VP /7

where P, is the population of a region. If the shift is greater

Q)

shift=

than 1, it is set as 1. The velocity of a branch is a sum of shifts,
given in Equation 8,

V(b) = ;Wﬁ (k) @®)

The classification of a branch utilizes the characteristics of a
vessel. A vessel has a tubular shape with homogeneous gray
value, in which a size change of cross sections along the center
line is small. If a vessel can be segmented as an isolated object,
those characteristics can be directly applied for classification.
However, segmenting an isolated object is another difficult
problem that requires classification. Rather, anatomical
knowledge is incorporated to add extra characteristics of a
vessel. Vessels are connected to bones at specific locations
such as vertebrae, pelvis, etc. For those locations, vessels can
fall into two categories in terms of approaching velocity: slow
and fast. For a slow approaching case, a vessel can have
typical characteristics of shape and size change as described
above because an image slice can show the cross section of a
vessel along the center line. On the contrary, a vessel with a
fast approaching velocity can have different characteristics of
shape and size change because an image slice can cut not a
perpendicular cross section but a slanted cross section that can
produce an elliptical region. To accommodate the two cases, a
branch is classified as a vessel if it satisfies either
AP(b) > aand SC(b) > cand SH(b) > s or

V(b) > vand AP(b) > a. The values for the parameters are
set as a= 0.6, ¢=0.6, s= 0.6 and v=2.



Table 1, Data sets used for evaluation

;(gf Sex Number of slice Thickness {mm) Spacing {(mmj}
1 M 674 3.20 1.60
3 M 504 3.20 1.60
4 M 580 3.20 1.60
5 M 874 1.25 1.26
6 M 444 3.00 150
7 M 1074 2.00 1.60
8 M 682 3.20 1.00
9 M 1113 2.00 1.00
0 M 1201 2.00 1.00
m M 1097 2.00 1.00
12 M 1099 2.00 1.00

Ill. RESULTS

The proposed method was applied to vessel enhanced
image data sets composed of about 500 ~ 1200 CT images of
size 512 x 512. The evaluation of the method was performed
in two groups of data sets. The first data set group consists of
eleven image data sets selected to represent ordinary patients
and was given at the development of the system. The data sets
include lower parts of a body from abdomen to feet. The
details of the data sets are summarized in Table 1. It specifies
data set number, sex, number of stices, image thickness, and

Fig. 2. (a} 3D viewof Data Set 11

(b) SRG result

Fig. 4. {a} Classified vessel; pink color
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spacing between slices. The second data set group was
randomly selected at a hospital when performance evaluation
was performed to test robustness of the method and consisted
of five patient data sets. All the quantitative analysis was
performed with the first data set group, while only subjective
evaluation was performed with the second data set group.

The 3D view for Data Set 11, composed of 1097 image
slices, is shown in Figure 2-a. It shows bone structures and
medium enhanced vessel structures. The segmentation result
using a conventional 3D SRG is shown in Figure 2-b. Leaking
to vessel structures results in an image containing both bones
and vessels. Such leaking comes from vessels attaching to
bones such as a vertebra and the pelvis. The attached cases are
illustrated with 2D images in Figure 3. The case of attaching to
a vertebra is shown in Figure 3-a, while the case of attaching
to the pelvis is shown in Figure 3-b. Junctions of those cases
are detected, and vessel regions are correctly classified as in
Figure 4. The final segmentation results of bone structures and
remaining vessel structures are illustrated with 3D views in
Figure 5. For Data Set 9 composed of 1113 image slices, 3D
views of original data, segmented bone structures, and
remaining vessel structures are shown in Figure 6-a, b, and c,
respectively. All connected bone structures are successfully
segmented, but the two ribs and two patellae are left because
they are disconnected from the main bone structure in the CT

Fig. 3, (a)Attaching a vessel and a vertebra (b} Attaching vessels and the pelvis

{b} Classified vessels; pink color
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data set images. The complex shaped vessels are successfully
extracted after subtracting the bone structure. The complex
shaped vessels are very difficult to extract with a method
attempting to segment vessels directly due to the complex
structure,

Figure 7-a shows a 3D leg view of Data Set 1, composed of
674 image slices. It contains a large number of isolated vessels
that are difficult to segment using conventional methods

Fig. 5. (a) Bone segmentation (b) Subtracted result

because the conventional methods utilize the connectivity of
an object. On the contrary, the proposed method can segment
such isolated vessels using the proposed complementary
approach, The result from bone subtraction is shown in Figure
8-b. All isolated vessels are successfully segmented.
Validation of the method is performed quantitatively and
qualitatively. The sensitivity, which is a ratio of the number of
classified bone branches out of the number of true bone
branches, was 100%. The specificity, which is the number of
vessel branches classified as bone branches, was 6 branches/
data set. The false positive branches have a non-tubular shape
and approach slowly to a bone, which is a characteristic
similar to that of a bone branch. Although they can be correctly
classified by adjusting parameters, such adjusting reduces
sensitivity. Because radiologists preferred to cutoff attached
vessels rather than draw a missing bone for routine use, the
system is designed to have 100% sensitivity, and provides a
one-click interactive tool to cut off a false positive branch. In

Fig. 7, (a) Bone and vessels {b) Vessel remnants

Fig. 6. (a) 3D view of Data Set 9 (b} Bone segmentation (c) Vessel result
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Fig. 8. Vessel Cutoff



the validation of the method, classification of true and false
branches was performed by a human operator. Qualitative
evaluation was also performed for both data set groups by
three professors in the radiology department. The results from
the first data set group composed of the eleven data sets used
in its development were evaluated as very promising.
Moreover, five image data sets as the second data set group
were randomly selected from patient data sets taken in May
2005 in a university hospital. The data sets were chosen by
doctors from patients for diagnosing vessel anomalies of
lower extremities, which aims to verify the proposed method
for routine use because many methods published in journals
actually fails to work in real data sets. The proposed method
was evaluated as very promising for routine use. Comparison
to a conventional SRG method showed that bone structure
leaked to vessels attached to bones in all data sets and
produced similar results as Figure 2-b. This comparison is
performed because the SRG has a comparable efficiency for
routine diagnosis use although more sophisticated methods
such as an active shape models can produce more accurate
results. However, such a complicated method, we believe,
takes much more computing time that prevents the method
from being used for routine diagnosis at the current computing
power.

The computation time was measured using a Intel Dual
Core 2 Duo 2.4GHz processor with 2G main memory. Due to
the loading limitations of the visualization software, data sets
with more than 700 slices were loaded with even numbered
slices. For about 500~700 slices of 512x512 CT images of
eleven data sets, the computation time took less than two
seconds. Furthermore, removing unnecessary growing to vessels
in the first step and the redundant re-growing in the third step
will reduce computation time by half.

Separation of attached vessels is necessary for correct
segmentation of vessels, When a vessel is attached to a bone,
the attached vessel region is segmented as a bone region in the
current implementation, although it does not leak over a vessel
branch in a junction. Such a vessel region makes a cut-offin a
vessel as shown in Figure 9. For recovery of the cut-off,
detection and separation of vessels attached to a bone will be
studied.

IV. CONCLUSION

As an alternative approach for segmenting vessels in lower
extremity, segmenting and subtracting bones have been
implemented. The bone segmentation method has successfully
segmented bone structures efficiently for routine use. The
segmented bone structures are subtracted to achieve vessel
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structures that can have a very complex shape and can contain
a large number of isolated vessel segments. The segmentation
method prevents leaking to a vessel structure by detecting a
junction and cutting a vessel branch. To classify a vessel
branch, appearance, shape, size change, and velocity of a
branch are computed. The classification is performed only at
junctions while a 3D volume is growing with an efficient
SRG, which makes the segmentation method efficient. Sepa-
rating vessels attached to bones will be studied.
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