• Title/Summary/Keyword: bonding performance

Search Result 615, Processing Time 0.033 seconds

The Characteristics of Bonding for Thermo-plastic using Solar Energy (태양에너지를 이용한 열경화성 플라스틱 접합특성)

  • Kim, Ok-Sam;Kim, Il-Soo;Son, Joon-Sik;Seo, Joo-Hwan;Moon, Chae-Joo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.106-111
    • /
    • 2007
  • In this research work attempts were made to study the bonding of thermo-plastics with adhesives using solar radiation. In order to study the curing behaviour necessary experiments were conducted under varying conditions of temperature, exposure time and power of solar energy. The cured samples were then studied under the optical microscope before subjecting to tensile testing in order to study their mechanical properties of thermo-plastics. The fracture surfaces were further studied under the Scanning Electron Microscopy(SEM) in order to research the microstructural changes that are taken place during curing. In order to measure the performance of solar energy cured joints the parameters such as; bond strength, surface morphology, the microstructual changes, variation in properties of adhesives bonded joints are compared to that of specimen cured at ambient conditions and specimen cured using microwave techniques.

Design Optimization of GaAs Wafer Bonding Module (GaAs 웨이퍼 본딩모듈의 최적화 설계)

  • 지원호;송준엽;강재훈;한승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.860-864
    • /
    • 2003
  • Recently. use of compound semiconductor is widely increasing in the area of LED and RF device. In this study, wafer bonding module is designed and optimized to bond 6 inches device wafer and carrier wafer. Bonding process is performed in vacuum environment and resin is used to bond two wafers. Load spreader and double heating mechanisms are adopted to minimize wafer warpage and void. Structure and heat transfer analyses show the designed mechanisms are very effective in performance improvement.

  • PDF

3D Accuracy Enhancement of BGA Shiny Round Ball Using Optical Triangulation Method (광삼각법을 이용한 고반사 BGA 볼의 정밀 높이 측정 방법)

  • Joo, Byeong Gwon;Cho, Taik Dong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.799-805
    • /
    • 2015
  • The further development of information, communication and digital media technologies requires the use of advanced, miniaturized semiconductor chips that operate at a high frequency. Die bonding and wire bonding methods for semiconductor packaging have been replaced by direct attachment to the substrate after forming a bump on the chip. However, the height of the bump or ball is an important factor for defects during assembly. This paper proposes an algorithm to measure the height of the bumps or balls in semiconductor packaging with greater accuracy. The performance of the proposed algorithm is experimentally validated. Non-contact 3D measurements of a shiny round ball is quite difficult, and it is not easy to obtain accurate data. This paper thus proposes an optical method and technique to improve the measurement accuracy.

Development of Automatic Bonding System for GaAs Wafer (GaAs Wafer 접합용 본딩시스템 개발)

  • Song J.Y.;Kang J.H.;Lee C.W.;Ha T.H.;Jee W.H.;Kim W.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.427-431
    • /
    • 2005
  • In this study, 6' GaAs wafer bonding system is designed and optimized to bond 6 inches device wafer and material wafer. Bonding process is performed in vacuum environment and resin is used to bond two wafers. Vacuum module and double heating mechanisms are adopted to minimize wafer warpage and void. Structure and heat transfer analysis, et al of the core modules review the designed mechanisms are very effective in performance improvement. As a result, high productivity (tack time cut-down) and stabilized process can be obtained by reducing breakage failure of wafer.

  • PDF

The Performance Characteristics of the Open Celled Aluminum Foam Applied for Heat Dissipation (다공성 알루미늄 방열핀의 성능특성 연구)

  • Kim, Jong-Soo;Lee, Hyo-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2003
  • Experimental study for a porous aluminum heat dissipator/or heat sink made by casting method is conducted to evaluate the performance of the porous aluminum heat sinks. The parameters applied for the present study are the manufacturing method. various bonding materials for the bottom plate of heat sink, and their different material, pore size, etc.. The casting method for porous aluminum heat sink is suggested for the best performance of heat dissipation in this experiment. The bottom plate applied by melting aluminum is introduced and proved their excellent characteristics compared with brazing, soldering, and bonding methods. In the present experiment, aluminum with different conductivities, such as AC8A and pure aluminum, are tested and the pure aluminums with the higher conductivity than AC8A shows their improvement of the performance. And the proper dimensions related to the pore size and the height of porous aluminum heat sinks are proposed in the present study.

Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method (Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동)

  • Kim, Sung Joon;Lim, Tae Seop;Kim, Bong-Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

Basic Performance Evaluation of a Tack Coat Material for Use with a Spray Paver (동시포설 공법을 위한 택코트 재료의 기초 성능 평가 연구)

  • Jo, Shinheang;Kim, Kyungnam;Cui, Wenhui;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.737-744
    • /
    • 2021
  • Spray paving minimizes material lost during the construction or repair of a road surface, and it can be done in conjunction with tack coating. This approach involves applying the asphalt mixture at the same time as spraying the tack coat by attaching a spraying device to the asphalt paver. When applying an asphalt overlay to an aged concrete surface, it is important to ensure the adhesion performance between different material properties. Accordingly, there is a need for a tack coat that can be applied by spray paving and that exhibits good adhesive performance on different materials. In this study, bonding strength tests under various conditions were performed to evaluate the basic performance of a tack coat developed for use with a spray paver. The bonding performance of the tack coat was observed to be affected by curing conditions and material lost during construction. The test results also showed that the tensile and shear bonding strengths of the developed tack coat were 1.21 and 1.99 times higher than those of a conventional one, respectively. As a result, the developed tack coat is considered suitable for application to spray paving.

Design and Performance Evaluation of Carbon Fiber/Epoxy Composite-aluminum Hybrid Wheel for Passenger Cars (자동차용 탄소섬유/에폭시 복합재료-알루미늄 하이브리드 휠 설계 및 성능평가)

  • Hong, Jin-Ho;Yoo, Seong-Hwan;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.386-391
    • /
    • 2013
  • In this paper, a carbon fiber/epoxy composite-aluminum hybrid wheel for passenger cars was suggested for better performance and a prototype was fabricated and tested. Adhesive bonding between aluminum part and a composite rim part was used, and the bonding length and thickness were determined by finite element analysis. For self alignment and the function of bonding jig the special structure with a groove and a protrusion was applied. To evaluate the performance of the hybrid wheel various FE analyses were carried out. Inner and outer molds were prepared for the composite rim part and the thermoformed composite part was bonded to the aluminum part. Vibration tests revealed that the hybrid wheel had 16% higher resonance frequency and 32% higher damping capacity with 10% weight reduction.

Performance Improvement of Thin Pavement Layer using Epoxy and Ceramics Composite Materials (에폭시와 세라믹스를 결합한 혼합물 이용 박층 포장공법의 성능개선)

  • Kim, Wan-Sang;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.65-70
    • /
    • 2008
  • Asphalt concrete pavements are susceptible to deformation and failure compared to cement concrete pavements. Epoxy is commonly used to enhance the bonding and durability of structures. Based on this concept, an epoxy and ceramics combined mixture was developed and applied to the field to estimate the pavement performance, Laboratory and field performance tests were conducted to observe the applicability of epoxy and ceramics composite materials compared to the conventional one. In this research, the epoxy and ceramics composite mixturewas used in two ways. 7 mm and 15 mm of thin surface layers using the mixture were constructed on cement and asphalt concrete pavements, respectively, after surface treatment. 12 months of field performance surveys were conducted to observe the resistances to the crack and deformation. According to the field performance tests, epoxy and ceramics combined mixture showed better bonding and field performances than the conventional one.

Effect of Desmear Treatment on the Interfacial Bonding Mechanism of Electroless-Plated Cu film on FR-4 Substrate (Desmear 습식 표면 전처리가 무전해 도금된 Cu 박막과 FR-4 기판 사이의 계면 접착 기구에 미치는 영향)

  • Min, Kyoung-Jin;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.625-630
    • /
    • 2009
  • Embedding of active devices in a printed circuit board has increasingly been adopted as a future electronic technology due to its promotion of high density, high speed and high performance. One responsible technology is to embedded active device into a dielectric substrate with a build-up process, for example a chipin-substrate (CiS) structure. In this study, desmear treatment was performed before Cu metallization on an FR-4 surface in order to improve interfacial adhesion between electroless-plated Cu and FR-4 substrate in Cu via structures in CiS systems. Surface analyses using atomic force microscopy and x-ray photoemission spectroscopy were systematically performed to understand the fundamental adhesion mechanism; results were correlated with peel strength measured by a 90o peel test. Interfacial bonding mechanism between electrolessplated Cu and FR-4 substrate seems to be dominated by a chemical bonding effect resulting from the selective activation of chemical bonding between carbon and oxygen through a rearrangement of C-C bonding rather than from a mechanical interlocking effect. In fact, desmear wet treatment could result in extensive degradation of FR-4 cohesive strength when compared to dry surface-treated Cu/FR-4 structures.