• Title/Summary/Keyword: bonding energy

Search Result 616, Processing Time 0.026 seconds

Hydrogen Bonding Analysis of Hydroxyl Groups in Glucose Aqueous Solutions by a Molecular Dynamics Simulation Study

  • Chen, Cong;Li, Wei Zhong;Song, Yong Chen;Weng, Lin Dong;Zhang, Ning
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2238-2246
    • /
    • 2012
  • Molecular dynamics simulations have been performed to investigate hydrogen bonding characteristics of hydroxyl groups in glucose aqueous solutions with different concentrations. The hydrogen bonding abilities and strength of different O and H atom types have been calculated and compared. The acceptor/donor efficiencies have been predicted and it has been found that: (1) O2-HO2 and O3-HO3 are more efficient intramolecular hydrogen bonding acceptors than donors; (2) O1-HO1, O4-HO4 and O6-HO6 are more efficient intramolecular hydrogen bonding donors than acceptors; (5) O1-HO1 and O6-HO6 are more efficient intermolecular hydrogen bonding acceptors than donors while hydroxyl groups O2-HO2 and O4-HO4 are more efficient intermolecular hydrogen bonding donors than acceptors. The hydrogen bonding abilities of hydroxyl groups revealed that: (1) the hydrogen bonding ability of OH2-$H_w$ is larger than that of hydroxyl groups in glucose; (2) among the hydroxyl groups in glucose, the hydrogen bonding ability of O6-HO6 is the largest and the hydrogen bonding ability of O4-HO4 is the smallest; (3) the intermolecular hydrogen bonding ability of O6-HO6 is the largest; (4) the order for intramolecular hydrogen bonding abilities (from large to small) is O2-HO2, O1-HO1, O3-HO3, O6-HO6 and O4-HO4.

Analysis of Transmission Infrared Laser Bonding for Polymer Micro Devices (폴리머 마이크로 장치에 대한 레이저 투과 마이크로 접합)

  • Kim, Joo-Han;Shin, Ki-Hoon
    • Journal of Welding and Joining
    • /
    • v.23 no.5
    • /
    • pp.55-60
    • /
    • 2005
  • A precise bonding technique, transmission laser bonding using energy transfer, for polymer micro devices is presented. The irradiated IR laser beam passes through the transparent part and absorbed on the opaque part. The absorbed energy is converted into heat and bonding takes place. In order to optimize the bonding quality, the temperature profile on the interface must be obtained. Using optical measurements of the both plates, the absorbed energy can be calculated. At the wavelength of 1100nm $87.5\%$ of incident laser energy was used for bonding process from the calculation. A heat transfer model was applied for obtaining the transient temperature profile. It was found that with the power of 29.5 mW, the interface begins to melt and bond each other in 3 sec and it is in a good agreement with experiment results. The transmission IR laser bonding has a potential in the local precise bonding in MEMS or Lab-on-a-chip applications.

Design by Topology Optimization and Performance Test of Ultrasonic Bonding Module for Flip-Chip Packaging (초음파 플립칩 접합 모듈의 위상최적화 설계 및 성능 실험)

  • Kim, Ji Soo;Kim, Jong Min;Lee, Soo Il
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.113-119
    • /
    • 2012
  • Ultrasonic bonding is the novel packaging method for flip-chip with high yield and low-temperature bonding. The bonding module is a core part of the bonding machine, which can transfer the ultrasonic energy into the bonding spot. In this paper, we propose topology optimization technique which can make new design of boding modules due to the constraints on resonance frequency and mode shapes. The designed bonding module using topology optimization was fabricated in order to evaluate the bonding performance and reliable operation during the continuous bonding process. The actual production models based on the proposed design satisfied the target frequency range and ultrasonic power. The bonding test was performed using flip-chip with lead-free Sn-based bumps, the results confirmed that the bonding strength was sufficient with the designed bonding modules. Also the performance degradation of the bonding module was not observed after the 300-hour continuous process with bonding conditions.

Analysis of Transmission Infrared Laser Bonding for Micro Polymer Devices (폴리머 마이크로 칩에 대한 레이저 투과 마이크로 접합)

  • Kim, Ju-Han;Sin, Gi-Hun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.43-45
    • /
    • 2005
  • A precise bonding technique, transmission laser bonding using energy transfer, for polymer micro devices is presented. The irradiated IR laser beam passes through the transparent part and absorbed on the opaque part. The absorbed energy is converted to heat and bonding takes place. In order to optimize the bonding quality, the temperature profile on the interface must be obtained. Using optical measurements of the both plates, the absorbed energy can be calculated and heat transfer model was applied for obtaining the transient temperature profile. The transmission laser bonding has a potential in the local precise bonding in MEMS or Lab-on-a-chip.

  • PDF

Quadrant Analysis in Correlation between Mechanical and Electrical Properties of Low-Temperature Conductive Film Bonded Crystalline Silicon Solar Cells

  • Baek, Su-Wung;Choi, Kwang-Il;Lee, Woo-Hyoung;Lee, Suk-Ho;Cheon, Chan-Hyuk;Hong, Seung-Min;Lee, Kil-Song;Shin, Hyun-Woo;Yan, Yeon-Won;Lim, Cheolhyun
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • In this study, we analyzed the correlation between mechanical and electrical properties of low-temperature conductive film (LT-CF) bonded silicon solar cells by a quadrant analysis (horizontal axis (peeling strength), vertical axis (power loss)). We found that a series of points with various bonding parameters such as bonding temperature, pressure and time were distributed in the different three regimes; weak regime (Q2: weak bonding strength and high power loss), moderate regime (Q4 : strong bonding strength and low power loss) and hard regime (Q3 : weak bonding strength and low power loss). Using this analogous technique, it was possible to fabricate the LT-CF bonded silicon solar cells with the various conditions displayed in Q3 of the quadrant plots, possessing the peeling strength of ~ 1N/mm and power loss of 2~3%.

Ultrasonic ACF Bonding Technique for Mounting LCD Driver ICs (LCD 구동 IC의 실장을 위한 초음파 ACF접합 기술)

  • Joung, Sang-Won;Yun, Won-Soo;Kim, Kyung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.543-547
    • /
    • 2008
  • In the paper, we develop the ultrasonic bonding technique for LCD driver chips having small size and high pin-density. In general, the mounting technology for LCD driver ICs is a thermo-compression method utilizing the ACF (An-isotropic Conductive Film). The major drawback of the conventional approach is the long process time. It will be shown that the conventional ACF method based on thermo-compression can be remarkably enhanced by employing the ultrasonic bonding technique in terms of bonding time. The proposed approach is to apply the ultrasonic energy together with the thermo-compression methodology for the ACF bonding process. To this end, we design a bonding head that enables pre-heating, pressure and ultrasonic excitation. Through the bonding experiments mainly with LCD driver ICs, we present the procedures to select the best combination of process parameters with analysis. We investigate the effects of bonding pressure, bonding time, pre-heating temperature before bonding, and the power level of ultrasonic energy. The addition of ultrasonic excitation to the thermo-compression method reduces the pre-heating temperature and the bonding process time while keeping the quality bonding between the LCD pad and the driver IC. The proposed concept will be verified and demonstrated with experimental results.

Effect of Bonding Process Conditions on the Interfacial Adhesion Energy of Al-Al Direct Bonds (접합 공정 조건이 Al-Al 접합의 계면접착에너지에 미치는 영향)

  • Kim, Jae-Won;Jeong, Myeong-Hyeok;Jang, Eun-Jung;Park, Sung-Cheol;Cakmak, Erkan;Kim, Bi-Oh;Matthias, Thorsten;Kim, Sung-Dong;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.319-325
    • /
    • 2010
  • 3-D IC integration enables the smallest form factor and highest performance due to the shortest and most plentiful interconnects between chips. Direct metal bonding has several advantages over the solder-based bonding, including lower electrical resistivity, better electromigration resistance and more reduced interconnect RC delay, while high process temperature is one of the major bottlenecks of metal direct bonding because it can negatively influence device reliability and manufacturing yield. We performed quantitative analyses of the interfacial properties of Al-Al bonds with varying process parameters, bonding temperature, bonding time, and bonding environment. A 4-point bending method was used to measure the interfacial adhesion energy. The quantitative interfacial adhesion energy measured by a 4-point bending test shows 1.33, 2.25, and $6.44\;J/m^2$ for 400, 450, and $500^{\circ}C$, respectively, in a $N_2$ atmosphere. Increasing the bonding time from 1 to 4 hrs enhanced the interfacial fracture toughness while the effects of forming gas were negligible, which were correlated to the bonding interface analysis results. XPS depth analysis results on the delaminated interfaces showed that the relative area fraction of aluminum oxide to the pure aluminum phase near the bonding surfaces match well the variations of interfacial adhesion energies with bonding process conditions.

Effect of Post-Annealing Conditions on Interfacial Adhesion Energy of Cu-Cu Bonding for 3-D IC Integration (3차원 소자 집적을 위한 Cu-Cu 접합의 계면접착에너지에 미치는 후속 열처리의 영향)

  • Jang, Eun-Jung;Pfeiffer, Sarah;Kim, Bi-Oh;Mtthias, Thorsten;Hyun, Seung-Min;Lee, Hak-Joo;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.204-210
    • /
    • 2008
  • $1.5\;{\mu}m$-thick copper films deposited on silicon wafers were successfully bonded at $415^{\circ}C$/25 kN for 40 minutes in a thermo-compression bonding method that did not involve a pre-cleaning or pre-annealing process. The original copper bonding interface disappeared and showed a homogeneous microstructure with few voids at the original bonding interface. Quantitative interfacial adhesion energies were greater than $10.4\;J/m^2$ as measured via a four-point bending test. Post-bonding annealing at a temperature that was less than $300^{\circ}C$ had only a slight effect on the bonding energy, whereas an oxygen environment significantly deteriorated the bonding energy over $400^{\circ}C$. This was most likely due to the fast growth of brittle interfacial oxides. Therefore, the annealing environment and temperature conditions greatly affect the interfacial bonding energy and reliability in Cu-Cu bonded wafer stacks.

A study on bonding characteristics of SoQ bonding according to surface treatment process conditions (표면처리 공정 조건에 따른 SoQ 접합의 접합 특성에 관한 연구)

  • Kim, Jong-Wan;Song, Eun-Seok;Kim, Yong-Kweon;Baek, Chang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1501_1502
    • /
    • 2009
  • Plasma treatment time was optimized to maximize the bonding strength between silicon and quartz. Bonding strength between the silicon and quartz is related to a surface energy which can be calculated by contact angle measurement. It was found that optimized time to get maximized surface energy was 15 sec. Silicon and quartz wafers were treated with $O_2$ plasma under different time splits and then bonded together. Bonding strength of the bonded wafers was measured by shear test. It was verified that the highest bonding strength was obtained when the silicon and quartz wafers were treated for 15 seconds. The maximum bonding strength exceeded the fracture strength of silicon.

  • PDF

Theoretical Studies of Hydrogen Bonded Dimers AM1 Study of Hydrogen-Bonding Energies of MeOH-solvent Binary Systems (水素結合 이합체에 關한 理論的인 硏究, 메탄올-溶妹 이성분계에 대한 水素結合 에너지의 AM1 的 硏究)

  • Shi Choon Kim;Myoung Ok Park
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.249-259
    • /
    • 1988
  • The solvent effects of MeOH-solvent dimers were studied via AM1 Hamiltonian and supermolecule methods. Methanol, ethanol, acetone, dimethylsulfoxide, N,N-dimethylformamide, tetrahydrofuran, dioxane, and acetonitrile were considered as solvent molecules. Optimized geometries, electron densities, molecular energies, and hydrogen-bonding energies of monomers and dimers were calculated. We found that the stabilization energies contributed to the hydrogen-bonding were decreased in the order of dimethylsulfoxide > ethanol > N,N-dimethylformamide > acetone > methanol > tatrahydrofuran > dioxane > acetonitrile, and this order was explained by using the change of electron density and energy partition functions.

  • PDF