• Title/Summary/Keyword: bonding behavior

Search Result 550, Processing Time 0.026 seconds

Development of the Ag/Cu Ingots for Mokumegane Jewelry (모꾸메가네 장신구를 위한 은/동 접합 잉곳 소재 개발)

  • Song, Oh-Sung;Kim, Jong-Ryul;Kim, Myung-Ro
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Mokumegane is one of the sophisticated metal craft techniques enabling wood grain surface effect. To embody the mokumegane, an ingot of well-bonded stacked metal plates has been required. Traditionally prepared mokumegane ingots were bonded using charcoal which enables reduction atmosphere, but sometimes end up with collapse of bonding interface due to the lack of reliable process control. We proposed a systematic vacuum direct bonding process for ingots. First, we confirmed copper//copper homogeneous plate bonding at $900^{\circ}C$ by applying uniaxial press of 2.5kg. We observed 80min required to obtain 90%-bonding ratio and the diffusion coefficient would be enhanced up to 100 times due to surface effect. Second, by considering enhanced diffusion behavior, we also obtained optimum bonding condition in copper/silver heterogeneous plates that ensures 90%-bonding ratio at $700^{\circ}C$ for 10min with apply uniaxial press. A 7-layered copper/silver ingot is prepared successfully, and eventually the prototype mokumegane cases for mobile phone were fabricated with these ingot.

Calculation of Required Bond Strength for Bridge Deck Overlay Using Finite Element Analysis (유한요소해석을 이용한 교면포장의 필요부착강도 산정)

  • Kwon, Hyuck;Jang, Heung-Gyun;Jung, Won-Kyong;Kim, Dong-Ho;Yung, Kyong-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.191-196
    • /
    • 2002
  • The bonding strength of the interface between the actual bridge concrete deck and overlay was primarily affected by the shear that depended on the flexural behavior than pure tensile, but the field bonding test measured bonding strength by the pure tensile due to simplicity and field applicability. Therefore, the purpose this study was to evaluate the required direct bond strength for bridge deck overlay using Finite element analysis with the many variavles such as bridge deck types, span length, material properties, lanes, and loading types. The commercial program LUSAS was used in analysis. The analysis results were compared to the value of specification currently used in highway construction site.

  • PDF

Observation of Oxide Film Formed at Si-Si Bonding Interface in SFB Process (SFB 공정시 Si-Si 집합 계면에 형성되는 산화막의 관찰)

  • 주병권;오명환;차균현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.1
    • /
    • pp.41-47
    • /
    • 1992
  • In SFB Process, after 110$0^{\circ}C$ annealing in wet OS12T(95$^{\circ}C$ HS12TO bubbling) atmosphere, the existence of the interfacial oxide film in micro-gap at Si-Si bonding interface was identified. The angle lapping/staining and SEM morphologies of bonding interface showed that the growing behavior of interfacial oxide made a contribution to eliminate the micro-gaps having a width of 200-300$\AA$. In case of the diodes composed of p-n wafer pairs made by SFB processes, the annealed one in wet OS12T atmosphere exhibited a dielectric breakdown phenomena of interfacial oxide at 37-40 volts d.c.

  • PDF

Self-doped Carboxylated Polyaniline: Effect of Hydrogen Bonding on the Doping of Polymers

  • Kim, Seong-Cheol;Whitten, James;Kumar, Jayant;Bruno, Ferdinando F.;Samuelson, Lynne A.
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.631-637
    • /
    • 2009
  • This study examined the unique self-doping behavior of carboxylated polyaniline (PCA). The self-doped PCA was synthesized using an environmentally benign enzymatic polymerization method with cationic surfactants. XPS showed that HCl-doped PCA contained approximately 34% of protonated amines but self-doped PCA contained 9.6% of the doped form of nitrogen at pH 4. FTIR and elemental analysis showed that although the PCA was doped with the proton of strong acids at low pH via the protonation of amines, the self-doping mechanism of PCA at pH > 4 was mainly due to hydrogen bonding between the carboxylic acid group and amine group.

Analysis of Effects on Concrete Beam Strengthened with CFRP Plate according to Temperature Change (CFRP로 보강된 콘크리트 보의 온도 변화에 따른 영향 분석)

  • 조홍동;한상훈;이승수;신진환
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • In this study, the behavior characteristics of specimen strengthened with CFRP plate were analyzed according to the change of temperature. CFRP plate itself has a good resistance at the high temperature, but epoxy used as a adhesive is lost its bonding strength at the relatively low temperature. Therefore, this study carries out experiment on the beams slot-bonded with CFRP plates in order to maintain the successful bonding strength of epoxy at high temperature. It is presented that the range of glass transition temperature is 60-8$0^{\circ}C$ and RC beams slot-bonded with CFRP plate shows more increasing resistance and failure load than that of interface bonded at the high temperature.

Micro Computer Tomography Applied Monotonic Pullout Test for Deformed Rebar Bonding Model (이형 철근의 콘크리트 부착 모델 수립을 위한 Micro-CT 활용 단조가력 시험)

  • Jang, Indong;Cho, Junghyun;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.192-193
    • /
    • 2020
  • In reinforced concrete adhesion studies, the demolition of the specimen is inevitably involved, and the studies conducted are limited to the macro load-displacement analysis. In order to establish an elaborate model for concrete bonding reinforced rebars, it is necessary to observe the rebar bonding behavior in the in-situ state. In this study, specially manufactured reinforcing bars, micro-UTM and 𝝁-computer tomography (𝝁CT) are used to observe reinforcing bars in the in-situ state. As a result of the monotonic pullout test of the processed reinforcing bar, maximum bond stress were shown to be 16.7MPa, which is slightly higher than the existing 10 to 12 MPa, and then the empty space inside the specimen in which the pullout test was conducted using 𝝁CT was confirmed. Through additional research, the fracture phenomenon of concrete excluding voids will be studied.

  • PDF

Synergistic bond properties of new steel fibers with rounded-end from carbon nanotubes reinforced ultra-high performance concrete matrix

  • Nguyen Dinh Trung;Dinh Tran Ngoc Huy;Dmitry Olegovich Bokov;Maria Jade Catalan Opulencia;Fahad Alsaikhan;Irfan Ahmad;Guljakhan Karlibaeva
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.363-373
    • /
    • 2023
  • A novel type of steel fiber with a rounded-end shape is presented to improve the bonding behavior of fibers with Carbon Nanotubes (CNT)-reinforced Ultra-High Performance Concrete (UHPC) matrix. For this purpose, by performing a parametric study and using the nonlinear finite element method, the impact of geometric characteristics of the fiber end on its bonding behavior with UHPC has been studied. The cohesive zone model investigates the interface between the fibers and the cement matrix. The mechanical properties of the cohesive zone model are determined by calibrating the finite element results and the experimental fiber pull-out test. Also, the results are evaluated with the straight steel fibers outcomes. Using the novel presented fibers, the bond strength has significantly improved compared to the straight steel fibers. The new proposed fibers increase bond strength by 1.1 times for the same diameter of fibers. By creating fillet at the contact area between the rounded end and the fiber, bond strength is significantly improved, the maximum fiber capacity is reachable, and the pull-out occurs in the form of fracture and tearing of the fibers, which is the most desirable bonding mode for fibers. This also improves the energy absorbed by the fibers and is 4.4 times more than the corresponding straight fibers.

Evaluation of the Bonding Behavior of the Rehabilitation Method Applying Carbon Fiber Subjected to the Variation of Environmental Condition (탄소섬유 접착 보강공법의 환경변화에 따른 부착특성 평가)

  • Han, Cheon Goo;Byun, Hang Yong;Park, Yong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • This paper provides the test results of bonding behavior of the interface between concrete substrate and carbon fiber in the rehabilitation method applying carbon fiber with epoxy based resin adhesive. The difference in each components was gradually increased subjected to the repetition of temperature variation, regardless of the strength of the substrate concrete, while the ultrasonic interface between each component occurred. An increase in difference of the temperature resulted in a decrease in bond strength of each component. Associated failure mode was shown to be interfacial failure and substrate concrete failure. No remarkable changes were found in the deformation and ultrasonic velocity of each component until the four cycles of the dry and moisture test. Hence, the moisture condition may not affect the bonding behavior of each component. After the repetition of dry and moisture test, corresponding bond strength was reduced to 40% of that before test. For the effect of freeze and thaw test, the cycle of freeze and thaw within 4 cycles resulted in debonding of each component.