• Title/Summary/Keyword: bonded system

Search Result 467, Processing Time 0.025 seconds

Fabrication of a novel micromachined measurement device for temperature distribution measurement in the microchannel (마이크로채널 내의 온도 분포 측정을 위한 미소 측정 구조물의 제작)

  • Park, Ho-Joon;Lim, Geun-Bae;Son, Sang-Young;Song, In-Seob;Pak, James-Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1921-1923
    • /
    • 2001
  • In this work, an array of resistance temperature detector(RTD) was fabricated inside the microchannel in order to investigate in-situ flow characteristics. A rectangular straight microchannel, integrated with RTD's for temperature sensing and a heat source for generating the temperature gradient along the channel. were fabricated with the dimension of $200{\mu}m(W){\times}{\mu}m(D){\times}$48mm(L), while RTD measured precise temperatures at the inside-channel wall. 4" $525{\pm}25{\mu}m$ thick P-type <100> Si wafer was used as a substrate. For the fabrication of RTDs. 5300$\AA$ thick Pt/Ti layer was sputtered on a Pyrex glass wafer. Finally, glass wafer was bonded with Si wafer by anodic bonding, therefore RTD was located inside the microchannel. The temperature distribution inside the fabricated microchannel was obtained from 4 point probe measurements and Dl water is used as a working fluid. Temperature distribution inside the microchannel was measured as a function of mass flow rate and heat flux. As a result, precise temperatures inside the microchannel could be obtained. In conclusion, this novel temperature distribution measurement system will be very useful to the accurate analysis of the flow characteristics in the microchannel.

  • PDF

Application of L Integral to Interface Crack Problems (계면균열 문제에 대한 L적분의 응용)

  • 박재학;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.34-42
    • /
    • 1986
  • An interface of a circular arc formed by two isotropic, homogeneous elastic materials is investigated. It is shown that L integral satisfies the conservation law for the interface if it is perfectly bonded, in frictionless contact or separated such as in a crack with the origin of the coordinate system being located at the center of the circular arc. The property of path independence of the L integral is applied to an interfacial crack problem, to obtain the stress intensity factors, where the interfacial crack is located along the arc of the circular inclusion embedded in infinite matrix. It is assumed here that the contact zone exist as in the model proposed by Comninou, thus removing the overlapping of the materials along the interface. Another example is shown for case of a circular interfacial crack in the matrix of finite size, where the stress intensity factors are determined by computing a value of the L integral numerically along the path far from the crack tip.

Evaluation and Application of T-Ray Nondestructive Characterization of FRP Composite Materials (FRP 복합재료의 T-Ray 비파괴특성 평가 및 적용)

  • Im, Kwang-Hee;Hsu, David K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.429-436
    • /
    • 2010
  • Recently, (terahertz ray) applications have emerged as one of the most promising new powerful nondestructive evaluation (NDE) techniques. In this study, a new T-ray time-domain spectroscopy system was utilized for detecting and evaluating layup effect and flaw in FRP composite laminates. Extensive experimental measurements in reflection and thru-transmission modes were made to map out the T-ray images. Especially this was demonstrated in thick GFRP laminates containing double saw slots. In carbon composites the penetration of terahertz waves is limited to some degree and the detection of flaws is strongly affected by the angle between the electric field(E-field) vector of the terahertz waves and the intervening fiber directions. The artificial defects investigated by terahertz waves were bonded foreign material, simulated disbond and delamination and mechanical impact damage. The effectiveness and limitations of terahertz radiation for the NDE of composites are discussed.

Bonding strength of resin and porcelain depending on the effects of zirconia surface etching (지르코니아 표면 에칭처리 효과에 따른 레진 및 도재의 결합강도)

  • Park, Young-Dae;Han, Sok-Yoon
    • Journal of Technologic Dentistry
    • /
    • v.39 no.4
    • /
    • pp.243-251
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effects of etching by monitoring the etched surfaces and the shear bonding strength of resin and porcelain with etched zirconia. Methods: The CAD/CAM was used to produce 24 zirconia blocks in groups of six. The zirconia specimen surfaces were sandblasted, and they were then divided into 12 specimens with surface etching and 12 specimens without etching for the control group. 12 specimens of composite resin were bonded using a curing light, and 12 specimens of porcelain underwent vita porcelain build-up sintering and the shear bonding strength was measured using a universal testing system. The SEM photographs were taken in order to observe any differences in the surfaces before and after etching, and they were magnified by a factor of 8 in order to observe fractured surface types. Results: The results of the shear bonding strength measurements are as follows: For the composite resin tests, between zirconia and resin, the shear bonding strength of the control group (NZR) without surface etching was 4.68 Mpa and the experimental group (EZC) with surface etching was 9.65 Mpa, which is significantly higher. The crystal structure of the zirconia was confirmed to be different in observations of the surfaces before and after etching. Conclusion : In comparing the shear bonding strength of zirconia and composite resin, the effects of etching were found to be significant. The effects of surface etching were also observed in fractured surfaces between zirconia and porcelain. This is expected to be applicable to various prosthetics as surface etching on zirconia is used in clinics.

Problems and Countermeasures in Installation of Down Conductor Systems (인하도선시스템 시설에서의 문제점과 대책)

  • 이복희;이동문;강성만;엄주홍;정동철;이승칠;안창환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.38-45
    • /
    • 2002
  • This paper describes the technical issues of the domestic standard and guideline for lightning protection systems in order to propose the countermeasures in damage of computer and electronic equipments due to lightning surges. The relationship between the current flow in the down conductor and the current flow in the steel conduit surrounding the down conductor was investigated as a function of the installation method of down conductors. Also the experiments were conducted to evaluate the influences of the skin effect on the down conductor systems. As a result, when the down conductor were bonded to the steel conduit, the down conductor and the steel conduit act as one conductor, so much mure lightning current flows in the steel conduit than in the copper down conductor because of the skin effect and choking effect. Therefore to reduce the adverse effects such as the electrostatic induction and side flashes caused by the potential rise of down conductors due to lightning currents, it is extremely effective to bond the down conductor to the steel conduit and steel frame of structures.

Catalytic Activity of Metal-phthalocyanine Bonded on Polymer for Decomposition of Hydrogen Peroxide (고분자에 결합된 금속-프탈로시아닌의 과산화수소수 분해반응에 대한 촉매활성)

  • KimKong Soo 김공수;Yong Chul Chun;Young Woo Lee;Sang Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.662-668
    • /
    • 1989
  • The decomposition reaction of hydrogen peroxide was carried out by using metal-4,4',4",4"'-tetraaminophthalocyanine [Mt-$PcNH_2$, Mt = Fe(III), Co(II)] supported on poly (styrene-co-methacrylic acid), in heterogeneous aqueous system. These catalysts showed a catalse-like activity and Fe(III)-$PcNH_2$ supported on the copolymer was particularly effective for the decomposition of hydrogen peroxide. It was found that the rate of decomposition increased smoothly in the higher pH region and catalytic reaction was interfered by adding $CN^-,\;CNS^-,\;{C_2O_4}^{-2},\;I^-$ ions. The kinetics of the catalytic reaction was also investigated and the reaction proceeds according to the Michaelis-Menten type mechanism.

  • PDF

Stress Analysis of Total Knee System Depending on Implant Materials and Fixation Methods (인공무릎관절에 있어서 임플란트의 재료 및 고정방법에 따른 응력분석)

  • Cho, C.H.;Cho, Y.K.;Choi, J.B.;Choi, K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.484-488
    • /
    • 1997
  • Three-dimensional finite element analyses were used to compare the stress distribution and the stability of the fixation among seven different tibial components and to investigate the effect due to implant materials in total knee arthroplasty. The components included an intact tibia(Type I), Cemented Cobalt-Chromium tibial tray implanted with a PMMA cemented Co-Cr stem(Type II), Cemented Co-Cr tibial tray with a uncemented Co-Cr stem(Type III), Cemented Ultra High Molecular Weight Polyethylene (UHMWPE) tibial tray with a cemented UHMWPE stem (Type IV), Cemented UHMWPE tray with a uncemented UHMWPE stem(Type V), Cemented Co-Cr tray without a stem(Type VI), and Cemented UHMWPE tray without a stem(Type VII). Uncemented components were assumed to have complete bony in growth and a rigid state of fixation between component and bone. The interface between bone/cement/component of cemented components was also assumed to be fully bonded. Bi-condylar forces were applied. The results indicated that Uncemented stem components provided lower bone stress shielding and stress concentration. The UHMWPE tray and stem component showed better agreement with the intact tibia than the Co-Cr Alloy tray and stem components. If the implant tray can be fixed firmed without a stem, Cemented PE tray without a stem(Type VII) may be recommended to give the best characteristics in the sense of stress distribution and stability.

  • PDF

Measurement of Retaining Tensile Load with the Relative Displacement Detector of Ground Anchors (상대변위측정기를 이용한 지반앵커의 보유인장력 측정)

  • Jeong, Hyeon-Sik;Han, Kwang-Suk;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.59-69
    • /
    • 2017
  • The tension load of the ground anchor inserted in the ground gradually changes over time. In this regard the change of the initial tension load is primarily decreased by the fixation condition of the fixing head and the mechanical characteristics of the tensile material. The subsequent additional tension load is a time-dependent loss mostly due to the fixing conditions of the bonded length and the surrounding ground properties of the field. In this paper, therefore, a measurement system using a relative displacement detector that can relatively easily measure the change of tension load is discussed. As a result of the review, it was confirmed that the results using the relative displacement detector are similar to those of the real scale model test, and it was also confirmed that similar results were obtained with the result of the pull-out test conducted on the ground anchors fixed to weathered rocks condition. In addition, a pull-out test was conducted on the test anchors whose initial tension load loss was relatively large and through this test pull-out behavior of the tension type ground anchors was verified.

TREATMENT OF PRIMARY AND PERMANENT TEETH WITH THE AIR-ABRASIVE TECHNOLOGY (Air abrasion 기술을 이용한 유치 및 영구치의 수복)

  • Cho, Hyun;Lee, Kwang-Hee;Kim, Dae-Eop;Song, In-Kyung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.210-216
    • /
    • 2002
  • Air abrasion technology can prepare enamel and dentin for bonding, similar to etching by acidic gels and solutions. Longer treatment can excavate pit and fissures, preparing the tooth for immediate placement of bonded resin materials. Although not appropriate for every clinical situation, the air abrasive technology minimizes heat, vibration and bone-conducted noise associated with conventional means of caries removal since the cutting is accomplished by air pressure. Also, patients treated with the air-abrasion technology rarely request anesthesia. Air abrasion technology was more effective in treating early carious lesions and stains compared to lesions where caries had already progressed to produce soft dentin and the strong air stream and noise caused by the evacuation system was a major discomfort to pediatric patients, and the experience and skillfulness of clinician should be required for accurate and proper tooth preparation.

  • PDF

A strain-based wire breakage identification algorithm for unbonded PT tendons

  • Abdullah, A.B.M.;Rice, Jennifer A.;Hamilton, H.R.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.415-433
    • /
    • 2015
  • Tendon failures in bonded post-tensioned bridges over the last two decades have motivated ongoing investigations on various aspects of unbonded tendons and their monitoring methods. Recent research shows that change of strain distribution in anchor heads can be useful in detecting wire breakage in unbonded construction. Based on this strain variation, this paper develops a damage detection model that enables an automated tendon monitoring system to identify and locate wire breaks. The first part of this paper presents an experimental program conducted to study the strain variation in anchor heads by generating wire breaks using a mechanical device. The program comprised three sets of tests with fully populated 19-strand anchor head and evaluated the levels of strain variation with number of wire breaks in different strands. The sensitivity of strain variation with wire breaks in circumferential and radial directions of anchor head in addition to the axial direction (parallel to the strand) were investigated and the measured axial strains were found to be the most sensitive. The second part of the paper focuses on formulating the wire breakage detection framework. A finite element model of the anchorage assembly was created to demonstrate the algorithm as well as to investigate the asymmetric strain distribution observed in experimental results. In addition, as almost inevitably encountered during tendon stressing, the effects of differential wedge seating on the proposed model have been analyzed. A sensitivity analysis has been performed at the end to assess the robustness of the model with random measurement errors.