• Title/Summary/Keyword: bonded system

Search Result 467, Processing Time 0.03 seconds

Cracks in Tape Cast Oxide Laminar Composites (테이프 캐스팅 산화물 층상 복합체에서의 균열)

  • Kim, Ji-Hyun;Yang, Tae-Young;Lee, Yoon-Bok;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.484-489
    • /
    • 2002
  • Hot-pressure sintered laminar composites with alumina/zirconia or mullite/zirconia as an outer layer and alumina/zircon (resulting in reaction-bonded mullite/zirconia during sintering) as an inner layer were fabricated by tape casting and lamination. Various forms of crack were observed in sintered laminar composites, these cracks included channel cracks in the outer layer, transverse cracks in the inner layer and interface cracks debonding interlayer. Based on detailed microscopic observations, the cracks were attributed to thermal expansion mismatch between the oxides consisting of the each layer. In particular, the interlayer and transverse cracks were confirmed in the laminates consisted of the mullite/zirconia system as the outer layers, however, those cracks were not observed in the alumina/zirconia system used. In addition, the crack propagation did not exhibit same behavior in the two kinds of outer layer when the indentation load was applied.

Changes in mechanical properties of fusible interlinings on interlock fabrics for T-shirts (T-shirt용 환편물의 심지접착에 의한 역학적 특성 변화)

  • Kim, Myoung-Ok;Park, Myung-Ja
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.4
    • /
    • pp.448-457
    • /
    • 2017
  • This study aims to analyze the changes in the mechanical properties of interlock fabrics knitted with three types of fibers (i.e., cotton, wool, and polyester) by bonding fusible interlinings with varying deniers (i.e., 10D, 20D, and 30D) for a 3D virtual try-on system. We experimented with four properties and thicknesses of twelve specimens of interlining bonded knitted fabrics including face fabrics and interlinings. The results showed that the tensile property changed values (i.e., LT increased, and WT and RT decreased) according to the denier of interlinings; however, the change was slight. On the other hand, the bending property increased significantly as the denier of the interlining increased on both the wale and the course. Among shearing properties, the value of G increased as the denier of the interlining increased on both the wale and the weft; however, 2HG decreased. Additionally, changes in the compression property varied according to the fibers and the denier of the interlinings. The thickness of the knitted fabrics increased or decreased slightly by bonding the interlining. based on these results, we conclude that the 3D virtual system users need to reflect these numerical changes of interlock fabrics by bonding interlinings when they perform fitting tasks on the screen to accurately express the to accurately express the manufacturing conditions of the real garment.

FE Analysis of Exterior Wide Beam-Column Connections with Bonded Tendon Stress (부착된 프리스트레스 넓은 보-기둥 외부접합부의 유한요소해석)

  • Lee, Moon-Sung;Choi, Yun-Cheul;Lim, Jaei-Hyung;Moon, Jeong-Ho;Choi, Chang-Sick
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.307-315
    • /
    • 2008
  • Post-tensioned precast concrete system (PPS) consists of U-shaped precast wide beams and concrete column. The continuity of beam-column joint is provided with the topping concrete on the PC shell beam and post-tensioning. Nonlinear analysis was conducted, using ANSYS, a finite-element analysis program, to obtain data for determining the characteristics of the structure and to allow various parametric analyses for post-tensioned wide beam-column connections. In this analysis, the Solid 65 element was used, in which concrete element had 8 nodes and each node had 3 degrees of freedomIn. Solid 65, the shear-transfer factor reflects a decrease of shear strength for the positions with cracks, as an impact factor to make the analysis value approximate the experiment value. In this study, the behavior of test specineus were most closely predicted to the experimental results, when the shear-transfer coefficient 0.85 was used for a closed crack, and 0.2 was used for an open crack.

A Study on the Development of Porcelain Bonded Ni-Cr Dental Alloy (도재소부용 Ni-Cr 보철합금 개발에 관한 연구)

  • Lee, Gyu-Hwan;Sin, Myeong-Cheol;Choe, Bu-Byeong
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.37-46
    • /
    • 1985
  • Development of a dental Ni-Cr alloy system for porcelain veneering crown and bridge was studied in this research. The principles of alloy design were a) It should not contain toxic beryllium. b) It should have low melting Point. c) It should be easily ground and polished. d) It should possess an adequate strength to resist the deformational force In the mouth. e) It should be bondable Ivith porcelain by chemically. After investigating the effect of minor elements such as boron and rare earth metals on the mechanical properties of the Ni-Cr alloy system, the compromised ideal composition for dental use was determined. The composition was l9.6%, Cr, 5.6% Mo, 3.4% Si, 1, 0% Fe, 0.01% Ti, 0.5-1.0% B, 0.2-0.6% misch metal, balance Ni. To compare the performance of experimental alloy with commercially available alloys, the properties such as strength, melting point, and bond strength were measured. The results Ivere as follows: a) Boron increases the strength of the alloy but reduces the elongation. b) Misch metal increases the strength when the boron content is low, but does not increase the strength when boron content is high. And it reduces the elongation drastically, c) Mechanical strength of the experimental alloy was not superior to commercially available Be containing alloy, but handling performance such as castability, ease of granting and polishing, and cuttability were superior to the Be containing alloy.

  • PDF

Three-dimensional evaluation of the transfer accuracy of a bracket jig fabricated using computer-aided design and manufacturing to the anterior dentition: An in vitro study

  • Park, Jae-Hyun;Choi, Jin-Young;Kim, Seong-Hun;Kim, Su-Jung;Lee, Kee-Joon;Nelson, Gerald
    • The korean journal of orthodontics
    • /
    • v.51 no.6
    • /
    • pp.375-386
    • /
    • 2021
  • Objective: To evaluate the accuracy of a one-piece bracket jig system fabricated using computer-aided design and manufacturing (CAD/CAM) by employing three-dimensional (3D) digital superimposition. Methods: This in vitro study included 226 anterior teeth selected from 20 patients undergoing orthodontic treatment. Bracket position errors from each of the 40 arches were analyzed quantitatively via 3D digital superimposition (best-fit algorithm) of the virtual bracket and actual bracket after indirect bonding, after accounting for possible variables that may affect accuracy, such as crowding and presence of the resin base. Results: The device could transfer the bracket accurately to the desired position of the patient's dentition within a clinically acceptable range of ± 0.05 mm and 2.0° for linear and angular measurements, respectively. The average linear measurements ranged from 0.029 to 0.101 mm. Among the angular measurements, rotation values showed the least deviation and ranged from 0.396° to 0.623°. Directional bias was pronounced in the vertical direction, and many brackets were bonded toward the occlusal surface. However, no statistical difference was found for the three angular measurement values (torque, angulation, and rotation) in any of the groups classified according to crowding. When the teeth were moderately crowded, the mesio-distal, bucco-lingual, and rotation measurement values were affected by the presence of the resin base. Conclusions: The characteristics of the CAD/CAM one-piece jig system were demonstrated according to the influencing factors, and the transfer accuracy was verified to be within a clinically acceptable level for the indirect bracket bonding of anterior teeth.

Adhesive Area Detection System of Single-Lap Joint Using Vibration-Response-Based Nonlinear Transformation Approach for Deep Learning (딥러닝을 이용하여 진동 응답 기반 비선형 변환 접근법을 적용한 단일 랩 조인트의 접착 면적 탐지 시스템)

  • Min-Je Kim;Dong-Yoon Kim;Gil Ho Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.57-65
    • /
    • 2023
  • A vibration response-based detection system was used to investigate the adhesive areas of single-lap joints using a nonlinear transformation approach for deep learning. In industry or engineering fields, it is difficult to know the condition of an invisible part within a structure that cannot easily be disassembled and the conditions of adhesive areas of adhesively bonded structures. To address these issues, a detection method was devised that uses nonlinear transformation to determine the adhesive areas of various single-lap-jointed specimens from the vibration response of the reference specimen. In this study, a frequency response function with nonlinear transformation was employed to identify the vibration characteristics, and a virtual spectrogram was used for classification in convolutional neural network based deep learning. Moreover, a vibration experiment, an analytical solution, and a finite-element analysis were performed to verify the developed method with aluminum, carbon fiber composite, and ultra-high-molecular-weight polyethylene specimens.

Prediction for Fatigue Life of Composite Ply-overlap Joint Structures (복합재 플라이 오버랩 조인트 구조의 피로 수명 예측)

  • Yeju Lee;Hiyeop Kim;Jungsun Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.62-70
    • /
    • 2023
  • We proposed a technique for predicting Stress-Life (S-N) curve or fatigue life using geometric features of a ply-overlap joint structure in which plies of two composite materials are partially or wholly laminated and bonded. Geometric features that could affect fatigue properties of a structure were selected as variables. By analyzing relationships between geometric variables and material constants of the Epaarachchi-Clausen model, a fatigue model for composites, relational expressions of these two factors were proposed. To verify the prediction accuracy of the proposed method, fatigue life of a CFRP/GFRP ply-overlap joint was predicted. Predicted life and life obtained by test data-based model were compared to actual life. High prediction accuracy was confirmed by calculating the coefficient of determination of the predicted S-N curve.

Performance Assessment of Precast Concrete Segmental Bridge Columns with Shear Resistance Connecting Structure (전단저항 연결체를 갖는 프리캐스트 세그먼트 교각의 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kim, Seong-Woon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.591-601
    • /
    • 2008
  • The purpose of this study was to investigate the performance of precast concrete segmental bridge columns with shear resistance connecting structure. The system can reduce work at a construction site and makes construction periods shorter. A model of precast concrete segmental bridge columns with shear resistance connecting structure was tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. An bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly modified to predict the inelastic behaviors of segmental joints. The proposed numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated.

Stability Analysis and Reliability Evaluation of the Pretensioned Soil Nailing System (프리텐션 쏘일네일링 시스템의 안정해석 및 신뢰도 분석)

  • 김홍택;강인규;박사원;고용일;권영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.105-127
    • /
    • 1999
  • Application of the soil nailing method is continuously extended in maintaining stable excavations and slopes. Occasionally, however, ground anchor support system may not be used because of space limitations in urban excavation sites nearby the existing structures. In this case, soil nailing system with relatively short length of nails could be efficiently adopted as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in an excavation zone of the existing weak subsoils. Pretensioning the soil nails then, could play important roles in reducing deformations mainly in an upper part of the nailed-soil excavation system as well as improving local stability. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the pretensioned soil nailing system. Also proposed are techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. The predicted results are compared with the limited measurements obtained from the excavation site constructed by using the pretensioned soil nails. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors are analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and FLAC$^{2D}$ program analysis.s.

  • PDF

Evaluation of Shear Bond Strength of Various Orthodontic Bracket Bonding Agents (수종의 교정용 브라켓 접착 레진의 전단 강도 평가)

  • Youngjun, Ham;Miran, Han
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.3
    • /
    • pp.264-273
    • /
    • 2022
  • Due to the development of properties of adhesive materials currently used in dentistry, the bonding ability between the brackets and the tooth enamel has been greatly improved. In general, in situations where cooperation can be obtained, adhesion of the orthodontic bracket through the conventional three-step process can show excellent bonding strength. However, if it is difficult to expect patient cooperation, as in the pediatric dentistry area, or if moisture isolation is not properly performed, the binding strength that does not reach the expected effect. As a result, various products that simplify the process for adhesion are being developed. The aim of this study was to evaluate and compare the shear bonding strength between the conventional 3-step adhesion system, self-etching primer system and one-step adhesion system that reduces the priming process. A total of 60 human maxillary, mandibular premolars were prepared. Group I (control group) were followed conventional 3-step bonding process. Group II were conditioned with self-etching primer. Group III were etched with 37% phosphoric acid and brackets were bonded with self-priming adhesive. The resultant shear bond strength of each group was measured and an adhesive remnant index (ARI) was recorded. The mean shear bond strength of group I, II, III were 14.69 MPa, 11.21 MPa and 12.21 MPa respectively. Significant differences could only be found between group I, II and group I, III (p < 0.05). The ARI indicated no significant difference among all groups.