DOI QR코드

DOI QR Code

Prediction for Fatigue Life of Composite Ply-overlap Joint Structures

복합재 플라이 오버랩 조인트 구조의 피로 수명 예측

  • Yeju Lee (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Hiyeop Kim (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Jungsun Park (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 이예주 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 김휘엽 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 박정선 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2022.12.30
  • Accepted : 2023.01.27
  • Published : 2023.04.30

Abstract

We proposed a technique for predicting Stress-Life (S-N) curve or fatigue life using geometric features of a ply-overlap joint structure in which plies of two composite materials are partially or wholly laminated and bonded. Geometric features that could affect fatigue properties of a structure were selected as variables. By analyzing relationships between geometric variables and material constants of the Epaarachchi-Clausen model, a fatigue model for composites, relational expressions of these two factors were proposed. To verify the prediction accuracy of the proposed method, fatigue life of a CFRP/GFRP ply-overlap joint was predicted. Predicted life and life obtained by test data-based model were compared to actual life. High prediction accuracy was confirmed by calculating the coefficient of determination of the predicted S-N curve.

본 논문에서는 두 가지 복합재료의 플라이를 부분적 또는 전체적으로 적층하여 접합시킨 플라이 오버랩 조인트 구조의 기하학적 특징을 이용하여 응력-수명(S-N) 선도 및 피로 수명을 예측하는 기법을 제안한다. 구조의 피로 특성에 영향을 주는 기하학적 특징을 변수로 선정하였다. 기하학적 변수와 복합재 피로 모델인 Epaarachchi-Clausen 모델을 구성하는 재료상수의 관계를 분석하여 두 요소의 관계식을 제안하였다. 제안한 방법의 예측 정확도 검증을 위해서 CFRP/GFRP 플라이 오버랩 조인트의 피로 수명을 예측하였다. 예측된 수명과 시험 데이터 기반 모델로 얻은 수명을 실제 수명에 비교하였다. 또한, 예측된 S-N 선도의 결정 계수를 계산함으로써 높은 예측 정확도를 확인하였다.

Keywords

Acknowledgement

이 연구는 과학기술정보통신부의 지원을 받는 원천기술개발사업인 '무인이동체용 다기능 전자기 구조체의 설계 및 제작 연구' (2020M3C1C1A01084756)의 지원 및 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(과제 번호 : 2022R1A6A1A03056784).

References

  1. Y. J. Kee, D. K. Kim and J. W. Shin, "Cross-sectional design and stiffness measurements of composite rotor blade for multipurpose unmanned helicopter," Journal of Aerospace System Engineering, vol. 13, no. 6, pp. 52-59, Dec 2019.  https://doi.org/10.20910/JASE.2019.13.6.52
  2. H. J. Choi and H. B. Park, "A study on the structural design and analysis of air intake of unmanned aerial vehicles applied to composite materials," Journal of Aerospace System Engineering, vol. 16, no. 1, pp. 81-85, Feb 2022.  https://doi.org/10.20910/JASE.2022.16.1.81
  3. Y. S. Kim, Y. B. Kim, H. C. Park, K. J. Yoon and J. H. Lee, "Compressive behavior for smart skin of sandwich structure," Journal of the Korean Society for Aeronautical & Space Science, vol. 30, no. 8, pp. 56-64, Dec 2002. 
  4. D. H. Kim, W. B. Hwang, H. C. Park and W. S. Park, "Bending fatigue characteristics of surface -antenna-structure," Composites Research, vol. 17, no. 6, pp. 22-27, Dec 2004. 
  5. P. J. Callus, Novel concepts for conformal load-bearing antenna structure, DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION VICTORIA (AUSTRALIA) AIR VEHICLES DIV, Feb 2008. 
  6. J. Ahamed, M. Joosten, P. Callus, M. R. Wisnom and C. H. Wang, "Ply-overlap hybrid technique for joining dissimilar composite materials," Materials & Design, vol. 100, pp. 157-167, June 2016.  https://doi.org/10.1016/j.matdes.2016.03.112
  7. J. A. Epaarachchi and P. D. Clausen, "A empirical model for fatigue behavior prediction of Glass fibre-reinforced plastic composites for various stress ratios and test frequencies," Composites Part A : Applied science and manufacturing, vol. 34, no. 4, pp. 313-326, April 2003.  https://doi.org/10.1016/S1359-835X(03)00052-6
  8. ASTM D3039/D3039M-17, Standard test method for tensile properties of polymer matrix composite materials, ASTM international, Dec 2017. 
  9. ASTM D3479/D3479M-19, Standard test method for tension-tension fatigue of polymer matrix composite materials, ASTM international, May 2019. 
  10. ASTM E739-10, Standard practice for statistical analysis of linear or linearized stress-life(S-N) and strain-life(ε-N) fatigue data, ASTM international, Dec 2015. 
  11. J. Zhang, K. Chaisombat, S. He and C. H. Wang, "Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures," Materials & Design, vol. 36, pp. 75-80, April 2012.  https://doi.org/10.1016/j.matdes.2011.11.006
  12. K. Sakamoto, H. Azhari, H. M. Joseph, A. Nordin, K. Goda, M. Okamoto and H. Ito, "Relation between fatigue life and tensile strength of wood plastic composites," International Conference on Composite Materials(ICCM), 2017. 
  13. S. Zhou and X. Wu, "Fatigue life prediction of composite laminates by fatigue master curves," Journal of Materials Research and Technology, vol. 8, no. 6, pp. 6094-6105, Nov 2019.  https://doi.org/10.1016/j.jmrt.2019.10.003
  14. G. Wu, D. Li, W. J. Lai, Q. Chen, Y. Shi, L. Huang, H. Kang, Y. Peng and X. Su, "Experimental and numerical evaluations on the effects of adhesive fillet, overlap length and unbonded area in adhesive-bonded joints," Fatigue & Fracture of Engineering Materials & Structures, vol. 43, no. 10, pp. 2298-2311, July 2020.  https://doi.org/10.1111/ffe.13294
  15. S. Koshima, S. Yoneda, N. Kajii, A. Hosoi and H. Kawada, "Evaluation of strength degradation behavior and fatigue life prediction of plain-woven carbon-fiber-reinforced plastic laminates immersed in seawater," Composite Part A : Applied Science and Manufacturing, vol. 127, 105645, Dec 2019. 
  16. Z. Huang, W. Zhang, X. Qian, Z. Su, D. C. Pham and N. Sridhar, "Fatigue behaviour and life prediction of filament wound CFRP pipes based on coupon tests," Marine Structures, vol. 72, 102756, July 2020. 
  17. A. Malpot, F. Touchard and S. Bergamo, "Fatigue behaviour of a thermoplastic composite reinforced with woven glass fibres for automotive application," Procedia Engineering, vol. 133, pp. 136-147, 2015.  https://doi.org/10.1016/j.proeng.2015.12.641
  18. U. Javaid, C. Ling and P. Cardiff, "Mechanical performance of carbon-glass hybrid composite joints in quasi-static tension and tension-tension fatigue," Engineering Failure Analysis, vol. 116, 104730, Oct 2020.