• Title/Summary/Keyword: bond-shear

Search Result 985, Processing Time 0.025 seconds

Influence of nano-structured alumina coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements

  • Lee, Jung-Jin;Choi, Jung-Yun;Seo, Jae-Min
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.130-137
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. MATERIALS AND METHODS. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength (P<.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. RESULTS. Groups treated with the nano-structured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. CONCLUSION. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.

Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials

  • Lee, Ki-Sun;Shin, Myoung-Sik;Lee, Jeong-Yol;Ryu, Jae-Jun;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.350-357
    • /
    • 2017
  • PURPOSE. The object of the present study was to evaluate the shear bonding strength of composite to PEKK by applying several methods of surface treatment associated with various bonding materials. MATERIALS AND METHODS. One hundred and fifty PEKK specimens were assigned randomly to fifteen groups (n = 10) with the combination of three different surface treatments (95% sulfuric acid etching, airborne abrasion with $50{\mu}m$ alumina, and airborne abrasion with $110{\mu}m$ silica-coating alumina) and five different bonding materials (Luxatemp Glaze & Bond, Visio.link, All-Bond Universal, Single Bond Universal, and Monobond Plus with Heliobond). After surface treatment, surface roughness and contact angles were examined. Topography modifications after surface treatment were assessed with scanning electron microscopy. Resin composite was mounted on each specimen and then subjected to shear bond strength (SBS) test. SBS data were analyzed statistically using two-way ANOVA, and post-hoc Tukey's test (P<.05). RESULTS. Regardless of bonding materials, mechanical surface treatment groups yielded significantly higher shear bonding strength values than chemical surface treatment groups. Unlike other adhesives, MDP and silane containing self-etching universal adhesive (Single Bond Universal) showed an effective shear bonding strength regardless of surface treatment method. CONCLUSION. Mechanical surface treatment behaves better in terms of PEKK bonding. In addition, self-etching universal adhesive (Single Bond Universal) can be an alternative bonding material to PEKK irrespective of surface treatment method.

Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement

  • Han, Sang Yeon;Moon, Yun-Hee;Lee, Jonghyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.251-258
    • /
    • 2020
  • PURPOSE. The bond strengths between resin denture teeth with various compositions and denture base resins including conventional and CAD/CAM purposed materials were evaluated to find influence of each material. MATERIALS AND METHODS. Cylindrical rods (6.0 mm diameter × 8.0 mm length) prepared from pre-polymerized CAD/CAM denture base resin blocks (PMMA Block-pink; Huge Dental Material, Vipi Block-Pink; Vipi Industria) were bonded to the basal surface of resin teeth from three different companies (VITA MFT®; VITA Zahnfabrik, Endura Posterio®; SHOFU Dental, Duracross Physio®; Nissin Dental Products Inc.) using resin cement (Super-Bond C&B; SUN MEDICAL). As a control group, rods from a conventional heat-polymerizing denture base resin (Vertex™ Rapid Simplified; Vertex-Dental B.V. Co.) were attached to the resin teeth using the conventional flasking and curing method. Furthermore, the effect of air abrasion was studied with the highly cross-linked resin teeth (VITA MFT®) groups. The shear bond strengths were measured, and then the fractured surfaces were examined to analyze the mode of failure. RESULTS. The shear bond strengths of the conventional heat-polymerizing PMMA denture resin group and the CAD/CAM denture base resin groups were similar. Air abrasion to VITA MFT® did not improve shear bond strengths. Interfacial failure was the dominant cause of failure for all specimens. CONCLUSION. Shear bond strengths of CAD/CAM denture base materials and resin denture teeth using resin cement are comparable to those of conventional methods.

Effects of chemical surface treatment on the shear bond Strength of denture reliners and denture base resin (화학적 표면처리에 따른 의치상 레진과 이장재 간의 전단 결합강도)

  • Choi, Esther;Kwon, Eun-Ja
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5745-5751
    • /
    • 2013
  • The purpose of this study was to evaluate the effect of the surface treatment of MMA and TEGDMA concentration, silane coupling agent on the shear bond strength of denture base resin and denture reliners. Denture base resin surface was treated with MMA and TEGDMA concentration, silane coupling agent. After denture reliners were injected bond strength was measured. The results of MMA and TEGDMA concentration on the shear bond strength of Vertex self curing resin showed that the value of MMA 95% and TEGDMA 5%, MMA 90% and TEGDMA 10%, MMA 80% and TEGDMA 20% groups were higher than that of other group(P<0.05). MMA and TEGDMA concentration on the shear bond strength of Kooliner resin showed that the value of MMA 95% and TEGDMA 5%, MMA 90% and TEGDMA 10% were higher than that of other group(P<0.05). Silane coupling agent on the shear bond strength of Vertex self curing resin and Kooliner showed that the value of MMA 95% and silane coupling agent 5% groups was higher than that of other group(P<0.05). Therefore, we could conclude that appropriate chemical surface treatments are supposed to affect the bond of denture base resin and denture reliners.

Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

  • Kursoglu, Pinar;Karagoz Motro, Pelin Fatma;Yurdaguven, Haktan
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • PURPOSE. To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS. Fifty-five ceramic blocks ($5mm{\times}5mm{\times}2mm$) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at $37^{\circ}C$ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (${\alpha}$=0.05). RESULTS. Adhesion was significantly stronger in Group 2 ($3.88{\pm}1.94$ MPa) and Group 3 ($3.65{\pm}1.87$ MPa) than in Control group ($1.95{\pm}1.06$ MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 ($3.59{\pm}1.19$ MPa) and Control group. Shear bond strength was highest in Group 1 ($8.42{\pm}1.86$ MPa; P<.01). CONCLUSION. Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique.

Effects of various zirconia surface treatments for roughness on shear bond strength with resin cement (지르코니아의 거칠기 증가를 위한 다양한 표면처리방법이 레진 시멘트와의 전단결합강도에 미치는 영향)

  • Bae, Gang-Ho;Bae, Ji-Hyeon;Huh, Jung-Bo;Choi, Jae-Won
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.326-333
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the effects of various zirconia surface treatment methods on shear bond strength with resin cements. Methods: We prepared 120 cylindrical zirconia specimens (⌀10 mm×10 mm) using computer-aided design/computer-aided manufacturing (CAD/CAM). Each specimen was randomly subjected to one of four surface treatment conditions: (1) no treatment (control), (2) airborne-particle abrasion with 50 ㎛ of Al2O3 (A50), (3) airborne-particle abrasion with 125 ㎛ of Al2O3 (A125), and (4) ZrO2 slurry (ZA). Using a polytetrafluoroethylene mold (⌀6 mm×3 mm), we applied three resin cements (Panavia F 2.0, Super-Bond C&B, and Variolink N) to each specimen. The shear bond strength tests were performed in a universal testing machine. The surfaces of representative specimens of each group were evaluated under scanning electron microscope. We used one-way analysis of variance (ANOVA), two-way ANOVA, and post hoc Tukey honest significant difference test to analyze the data. Results: In the surface treatment method, the A50 group showed the highest bond strength, followed by A125, ZA, and control groups; however, no significant difference was observed between A50 and A125, A125 and ZA, and ZA and control (p>0.05). Among the resin cements, Super-Bond C&B showed the highest shear bond strength, followed by Panavia F 2.0 and Variolink N (p<0.05). Conclusion: Within the limitations of this study, application of airborne-particle abrasion and ZrO2 slurry improved the shear bond strength of resin cement on zirconia.

Comparison of Shear Bond Strength of Ceramic Fused to Ni-Cr and Co-Cr Alloy by Heat Treatment (도재용착용 Ni-Cr 합금과 Co-Cr 합금의 열처리에 따른 전단결합강도 비교)

  • Ahn, Jae-Seok;Ko, Eun-Kyung;Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.33 no.3
    • /
    • pp.185-192
    • /
    • 2011
  • Purpose: This study was to evaluate the shear bond strength of the ceramic fused to Ni-Cr alloy(Bellabond plus) and Co-Cr alloy(Wirobond C) by heat treatment. Methods: Metal specimens were divided into 5 groups for each alloy according to heat treatment conditions prior to porcelain application. Fifteen specimens from each group were subjected to a shear load a universal testing machine using a 0.1mm/min cross-head speed and one specimen from each group was observed with EDX line profile. Results: The diffusion of metal oxide observed far in the specimen heat treated than no heat treated in the opaque layer. The shear bond strength measured highest to BP3(50.50MPa), WC2(50.49MPa) groups and measured lowest from BP1(35.1MPaa), WC1(39.66MPa) groups which were not treated with heat, and there was a significant difference (p<0.05). Conclusion: The shear bond strength of Ni-Cr alloy(Bellabond plus) and Co-Cr alloy(Wirobond C) measured similar 5 groups all.

Study on Shear Bond Strength of Ni-Cr Alloy for Porcelain Fused to Metal Crown at the Temperature of Degassing (치과 도재용착용 Ni-Cr 합금의 열처리에 따른 결합력 연구)

  • Joo, Kyu-Ji;Shin, Jae-Woo;Cho, Hong-Kyu
    • Journal of Technologic Dentistry
    • /
    • v.38 no.2
    • /
    • pp.69-77
    • /
    • 2016
  • Purpose: This study was to evaluate the shear bond strength of ceramic fused to Ni-Cr alloy(Alophaloy) by heat treatment. Methods: The specimens were divided into 5 groups according to heat treatment conditions prior to porcelain application. Eighteen specimens from each group were subjected to the shear load a universal testing machine using a 0.1mm/min cross-head speed and two specimens from each group were observed with SEM and EDX line profile. Results: The observation of the oxide film on the metal surface by SEM photograph showed a coarsening with an increasing degassing hold time. The diffusion of metal oxide was observed farther from the opaque layer in the heat treated specimen than no heat treated specimen. The shear bond strength measured highest to A5(55.23MPa) in the 10min holding group and measured lowest from A1(24.38MPa) in the no heat treated group, and there was a significant difference(p<0.05). Conclusion: The shear bond strength of Ni-Cr alloy improved in the heat treatment compared to the no heat treatment specimen.

A STUDY ON THE BOND STRENGTH OF REINFORCED INDIRECT COMPOSITE RESINS TO DENIAL ALLOYS (강화형 간접복합레진과 치과용 합금의 결합강도에 관한 연구)

  • Yoon, Dong-Joo;Shin, Sang-Wan;Lim, Ho-Nam;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.620-639
    • /
    • 1999
  • Indirect composite resins are used as an popular effective esthetic material in prosthetic dentistry, often with metallic substructure that provides support for restorations. Recently, new indirect composite resins as a substitute of ceramic have been developed. These resins provide good esthetics, with a wide range of hue and chroma. And the flexural strength of those is in the range of 120-150MPa, Which is higher than that of feldspathic Ceramic, and similar th that of Dicor. Although it has many merits, one of the major clinical problems of composite resins is the bond failure between metal and resin due to insufficient interfacial bond strength. The purpose of this study was to evaluate shear bond strength of the reinforced indirect composite resin to dental alloys. Three different composite resin systems($Artglass^{(R)},\;Sculpture^{(R)},\;Targis^{(R)}$) as test groups and ceramic($VMK\;68^{(R)}$) as control group were bonded to Ni-Cr-Be alloy($Rexillium\;III^{(R)}$) and gold alloy(Deva 4). All specimens were stored at $^37{\circ}C$ distilled water for 24 hours and the half of specimens were thermocycled 2000 times at temperature from $5^{\circ}C\;to\;60^{\circ}C$. The shear bond strengths of reinforced indirect composite resins to dental alloys were measured by using the universal testing machine, and modes of debonding were observed by stereoscope and scanning electron microscope. The results were as follows: 1 The shear bond strengths of reinforced indirect composite resins to dental alloys were approximately half those of ceramic to dental alloys(P<0.01). 2. There was no significant difference between the shear bond strength of several reinforced indirect composite resins to metal. 3. Alloy type did not affect on the shear bond strengths of resin to metal, but the shear bond strengths of ceramic to gold alloys were higher than those of ceramic to Ni-Cr alloys(P<0.05). 4. The shear bond strengths of Artglass and Targil to gold alloys were significantly decreased after thermocycling treatment(P<0.01). 5. Sculpture showed cohesive, adhesive, and mixed failure modes, but Artglass and Targis showed adhesive or mixed failures. And ceramic showed cohesive and mixed failures.

  • PDF

Flexural Adhesive Behavior of Full-scale RC Beams Strengthened by Carbon Fiber Sheets (실물모형 실험에 의한 탄소섬유쉬트 보강 RC 보의 휨 부착거동)

  • 최기선;류화성;최근도;이한승;유영찬;김긍환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1003-1008
    • /
    • 2001
  • It is recently reported that bond failure can be initiated in the region where maximum bending moment and shear force is acted by accompanying shear deformation after flexural crack in full-scale RC beams strengthened by CFRP. Such a shear deformation effect causing bond failure is relatively little in the case of small-scale specimens. So, additional reinforcing details to the critical beam section where maximum moment and shear were acted is required to prevent the bond failure caused by the shear deformations. The U-type wrapping methods by CFRP to the critical beam section is proposed and tested in this paper. Also, the applicability of design bond strength derived from the tests of small-scale beam was investigated by the full-scale RC beam strengthened by CFRP.

  • PDF