DOI QR코드

DOI QR Code

Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

  • Kursoglu, Pinar (Department of Prosthodontics, Faculty of Dentistry, Yeditepe University) ;
  • Karagoz Motro, Pelin Fatma (Department of Prosthodontics, Faculty of Dentistry, Yeditepe University) ;
  • Yurdaguven, Haktan (Department of Restorative Dentistry, Faculty of Dentistry, Yeditepe University)
  • Received : 2012.10.02
  • Accepted : 2013.04.25
  • Published : 2013.05.31

Abstract

PURPOSE. To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS. Fifty-five ceramic blocks ($5mm{\times}5mm{\times}2mm$) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at $37^{\circ}C$ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (${\alpha}$=0.05). RESULTS. Adhesion was significantly stronger in Group 2 ($3.88{\pm}1.94$ MPa) and Group 3 ($3.65{\pm}1.87$ MPa) than in Control group ($1.95{\pm}1.06$ MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 ($3.59{\pm}1.19$ MPa) and Control group. Shear bond strength was highest in Group 1 ($8.42{\pm}1.86$ MPa; P<.01). CONCLUSION. Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique.

Keywords

References

  1. McLaughlin G. Porcelain veneers. Dent Clin North Am 1998; 42:653-656.
  2. Blatz MB. Long-term clinical success of all-ceramic posterior restorations. Quintessence Int 2002;33:415-426.
  3. Jensen ME, Sheth JJ, Tolliver D. Etched-porcelain resinbonded full-veneer crowns: in vitro fracture resistance. Compendium 1989;10:336-338; 340-341; 344-347.
  4. Bergman MA. The clinical performance of ceramic inlays: a review. Aust Dent J 1999;44:157-168. https://doi.org/10.1111/j.1834-7819.1999.tb00217.x
  5. Hayashi M, Wilson NH, Yeung CA, Worthington HV. Systematic review of ceramic inlays. Clin Oral Investig 2003; 7:8-19.
  6. Krämer N, Frankenberger R. Clinical performance of bonded leucite-reinforced glass ceramic inlays and onlays after eight years. Dent Mater 2005;21:262-271. https://doi.org/10.1016/j.dental.2004.03.009
  7. Sjögren G, Molin M, van Dijken JW. A 5-year clinical evaluation of ceramic inlays (Cerec) cemented with a dual-cured or chemically cured resin composite luting agent. Acta Odontol Scand 1998;56:263-267. https://doi.org/10.1080/000163598428428
  8. Braga RR, Ballester RY, Daronch M. Influence of time and adhesive system on the extrusion shear strength between feldspathic porcelain and bovine dentin. Dent Mater 2000;16: 303-310. https://doi.org/10.1016/S0109-5641(00)00023-3
  9. Davidson CL. Luting cement, the stronghold or the weak Link in ceramic restoration? Adv Eng Mater 2001;3:763-767. https://doi.org/10.1002/1527-2648(200110)3:10<763::AID-ADEM763>3.0.CO;2-C
  10. Kelly JR, Giordano R, Pober R, Cima MJ. Fracture surface analysis of dental ceramics: clinically failed restorations. Int J Prosthodont 1990;3:430-440.
  11. Thompson JY, Anusavice KJ, Naman A, Morris HF. Fracture surface characterization of clinically failed all-ceramic crowns. J Dent Res 1994;73:1824-1832.
  12. Haselton DR, Diaz-Arnold AM, Dunne JT Jr. Shear bond strengths of 2 intraoral porcelain repair systems to porcelain or metal substrates. J Prosthet Dent 2001;86:526-531. https://doi.org/10.1067/mpr.2001.119843
  13. Chen JH, Matsumura H, Atsuta M. Effect of etchant, etching period, and silane priming on bond strength to porcelain of composite resin. Oper Dent 1998;23:250-257.
  14. Chen JH, Matsumura H, Atsuta M. Effect of different etching periods on the bond strength of a composite resin to a machinable porcelain. J Dent 1998;26:53-58. https://doi.org/10.1016/S0300-5712(96)00078-4
  15. Sorensen JA, Engelman MJ, Torres TJ, Avera SP. Shear bond strength of composite resin to porcelain. Int J Prosthodont 1991;4:17-23.
  16. Wolf DM, Powers JM, O'Keefe KL. Bond strength of composite to porcelain treated with new porcelain repair agents. Dent Mater 1992;8:158-161. https://doi.org/10.1016/0109-5641(92)90074-M
  17. Bailey LF, Bennett RJ. DICOR surface treatments for enhanced bonding. J Dent Res 1988;67:925-931. https://doi.org/10.1177/00220345880670060701
  18. Ferrando JM, Graser GN, Tallents RH, Jarvis RH. Tensile strength and microleakage of porcelain repair materials. J Prosthet Dent 1983;50:44-50. https://doi.org/10.1016/0022-3913(83)90164-6
  19. Jochen DG, Caputo AA. Composite resin repair of porcelain denture teeth. J Prosthet Dent 1977;38:673-679. https://doi.org/10.1016/0022-3913(77)90013-0
  20. Semmelman JO, Kulp PR. Silane bonding porcelain teeth to acrylic. J Am Dent Assoc 1968;76:69-73.
  21. Lacy AM, LaLuz J, Watanabe LG, Dellinges M. Effect of porcelain surface treatment on the bond to composite. J Prosthet Dent 1988;60:288-291. https://doi.org/10.1016/0022-3913(88)90270-3
  22. Calamia JR. Etched porcelain veneers: the current state of the art. Quintessence Int 1985;16:5-12.
  23. Spohr AM, Sobrinho LC, Consani S, Sinhoreti MA, Knowles JC. Influence of surface conditions and silane agent on the bond of resin to IPS Empress 2 ceramic. Int J Prosthodont 2003;16:277-282.
  24. Stangel I, Nathanson D, Hsu CS. Shear strength of the composite bond to etched porcelain. J Dent Res 1987;66:1460-1465. https://doi.org/10.1177/00220345870660091001
  25. Matinlinna JP, Vallittu PK. Bonding of resin composites to etchable ceramic surfaces - an insight review of the chemical aspects on surface conditioning. J Oral Rehabil 2007;34:622-630 https://doi.org/10.1111/j.1365-2842.2005.01569.x
  26. Ozcan M, Alkumru HN, Gemalmaz D. The effect of surface treatment on the shear bond strength of luting cement to a glass-infiltrated alumina ceramic. Int J Prosthodont 2001;14: 335-339.
  27. Bertolini JC. Hydrofluoric acid: a review of toxicity. J Emerg Med 1992;10:163-168. https://doi.org/10.1016/0736-4679(92)90211-B
  28. Ersu B, Yuzugullu B, Ruya Yazici A, Canay S. Surface roughness and bond strengths of glass-infiltrated alumina-ceramics prepared using various surface treatments. J Dent 2009;37: 848-856. https://doi.org/10.1016/j.jdent.2009.06.017
  29. Gökçe B, Ozpinar B, Dündar M, Cömlekoglu E, Sen BH, Güngör MA. Bond strengths of all-ceramics: acid vs laser etching. Oper Dent 2007;32:173-178. https://doi.org/10.2341/06-52
  30. Akova T, Yoldas O, Toroglu MS, Uysal H. Porcelain surface treatment by laser for bracket-porcelain bonding. Am J Orthod Dentofacial Orthop 2005;128:630-637. https://doi.org/10.1016/j.ajodo.2004.02.021
  31. Spohr AM, Borges GA, Júnior LH, Mota EG, Oshima HM. Surface modification of In-Ceram Zirconia ceramic by Nd:YAG laser, Rocatec system, or aluminum oxide sandblasting and its bond strength to a resin cement. Photomed Laser Surg 2008;26:203-8. https://doi.org/10.1089/pho.2007.2130
  32. Cavalcanti AN, Pilecki P, Foxton RM, Watson TF, Oliveira MT, Gianinni M, Marchi GM. Evaluation of the surface roughness and morphologic features of Y-TZP ceramics after different surface treatments. Photomed Laser Surg 2009; 27:473-479. https://doi.org/10.1089/pho.2008.2293
  33. Jacobsen NL, Mitchell DL, Johnson DL, Holt RA. Lased and sandblasted denture base surface preparations affecting resilient liner bonding. J Prosthet Dent 1997;78:153-158. https://doi.org/10.1016/S0022-3913(97)70119-7
  34. da Silva Ferreira S, Hanashiro FS, de Souza-Zaroni WC, Turbino ML, Youssef MN. Influence of aluminum oxide sandblasting associated with Nd:YAG or Er:YAG lasers on shear bond strength of a feldspathic ceramic to resin cements. Photomed Laser Surg 2010;28:471-475. https://doi.org/10.1089/pho.2009.2528
  35. Kimyai S, Mohammadi N, Navimipour EJ, Rikhtegaran S. Comparison of the effect of three mechanical surface treatments on the repair bond strength of a laboratory composite. Photomed Laser Surg 2010;28:S25-S30.
  36. Chen JR, Oka K, Kawano T, Goto T, Ichikawa T. Carbon dioxide laser application enhances the effect of silane primer on the shear bond strength between porcelain and composite resin. Dent Mater J 2010;29:731-737. https://doi.org/10.4012/dmj.2009-106
  37. Hossain M, Nakamura Y, Yamada Y, Suzuki N, Murakami Y, Matsumoto K. Analysis of surface roughness of enamel and dentin after Er,Cr:YSGG laser irradiation. J Clin Laser Med Surg 2001;19:297-303. https://doi.org/10.1089/104454701753342749
  38. Usumez A, Aykent F. Bond strengths of porcelain laminate veneers to tooth surfaces prepared with acid and Er,Cr: YSGG laser etching. J Prosthet Dent 2003;90:24-30. https://doi.org/10.1016/S0022-3913(03)00235-X
  39. Güler AU, Yilmaz F, Ural C, Güler E. Evaluation of 24-hour shear bond strength of resin composite to porcelain according to surface treatment. Int J Prosthodont 2005;18:156-160.
  40. Fabianelli A, Pollington S, Papacchini F, Goracci C, Cantoro A, Ferrari M, van Noort R. The effect of different surface treatments on bond strength between leucite reinforced feldspathic ceramic and composite resin. J Dent 2010;38:39-43. https://doi.org/10.1016/j.jdent.2009.08.010
  41. Aida M, Hayakawa T, Mizukawa K. Adhesion of composite to porcelain with various surface conditions. J Prosthet Dent 1995;73:464-470. https://doi.org/10.1016/S0022-3913(05)80076-9
  42. Gökçe B. Effects of Er:YAG laser irradiation on dental hard tissues and all-ceramic materials: SEM Evaluation. In: Viacheslav Kazmiruk, editor. Scanning Electron Microscopy. New York; In tech; 2012. p. 179-212.
  43. Shiu P, De Souza-Zaroni WC, Eduardo Cde P, Youssef MN. Effect of feldspathic ceramic surface treatments on bond strength to resin cement. Photomed Laser Surg 2007;25:291-296 https://doi.org/10.1089/pho.2007.2018
  44. Akyil MS, Yilmaz A, Karaalioğlu OF, Duymuş ZY. Shear bond strength of repair composite resin to an acid-etched and a laser-irradiated feldspathic ceramic surface. Photomed Laser Surg 2010;28:539-545. https://doi.org/10.1089/pho.2009.2586
  45. Eversole LR, Rizoiu I, Kimmel AI. Pulpal response to cavity preparation by an erbium, chromium:YSGG laser-powered hydrokinetic system. J Am Dent Assoc 1997;128:1099-1106. https://doi.org/10.14219/jada.archive.1997.0367
  46. Kursoglu P, Yurdaguven H, Kazazoglu E, Çalýkkocaoglu S, Gursoy T. Effect of Er,Cr:YSGG laser on ceramic surface. Balk J Stomatol 2006;10:103-109.
  47. Ozcan M, Allahbeickaraghi A, Dündar M. Possible hazardous effects of hydrofluoric acid and recommendations for treatment approach: a review. Clin Oral Investig 2012;16:15-23. https://doi.org/10.1007/s00784-011-0636-6

Cited by

  1. Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material vol.6, pp.6, 2014, https://doi.org/10.4047/jap.2014.6.6.434
  2. Veneer Ceramic to Y-TZP Bonding: Comparison of Different Surface Treatments vol.25, pp.4, 2015, https://doi.org/10.1111/jopr.12304
  3. Effects of dentin surface treatments including Er,Cr:YSGG laser irradiation with different intensities on the push-out bond strength of the glass fiber posts to root dentin vol.73, pp.5, 2015, https://doi.org/10.3109/00016357.2014.968872
  4. Influence of Surface Treatments and Adhesive Systems on Lithium Disilicate Microshear Bond Strength vol.27, pp.4, 2016, https://doi.org/10.1590/0103-6440201600624
  5. Evaluation of Mechanical Properties of Glass Fiber Posts Subjected to Laser Surface Treatments vol.34, pp.10, 2016, https://doi.org/10.1089/pho.2016.4144
  6. Micromorfología superficial de 2 cerámicas grabables tratadas con diferentes ácidos vol.9, pp.1, 2016, https://doi.org/10.1016/j.piro.2015.09.007
  7. Effect of Different Surface Treatments on Bond Strength of Resin Cement to a CAD/CAM Restorative Material pp.1059941X, 2016, https://doi.org/10.1111/jopr.12574
  8. study pp.1314-3530, 2017, https://doi.org/10.1080/13102818.2017.1334589
  9. Effect of different power settings of Er,Cr:YSGG laser before or after tribosilicatization on the microshear bond strength between zirconia and two types of cements pp.1435-604X, 2017, https://doi.org/10.1007/s10103-017-2343-2
  10. The Effect of Er,Cr:YSGG Laser Application on the Micropush-Out Bond Strength of Fiber Posts to Resin Core Material vol.32, pp.10, 2014, https://doi.org/10.1089/pho.2014.3780
  11. Efficacy of Surface Roughness and Bond Strength of Y-TZP Zirconia After Various Pre-Treatments vol.33, pp.1, 2015, https://doi.org/10.1089/pho.2014.3825
  12. The effects of lasers on bond strength to ceramic materials: A systematic review and meta-analysis vol.13, pp.1, 2018, https://doi.org/10.1371/journal.pone.0190736
  13. The Effect of Surface Treatments on the Mechanical and Optical Behaviors of CAD/CAM Restorative Materials pp.1059941X, 2018, https://doi.org/10.1111/jopr.12749
  14. Comparative study of the effect of Er:YAG and Er:Cr;YSGG lasers on porcelain: etching for the bonding of orthodontic brackets pp.1435-604X, 2018, https://doi.org/10.1007/s10103-018-2573-y
  15. Effects of surface treatments on repair bond strength of a new CAD/CAM ZLS glass ceramic and two different types of CAD/CAM ceramics vol.60, pp.2, 2018, https://doi.org/10.2334/josnusd.17-0109
  16. Shear bond strengths of six different porcelain laminate veneer materials cemented to enamel with two different MDP-containing resin cements vol.29, pp.10, 2013, https://doi.org/10.1080/01694243.2015.1016597
  17. Influence of Etching Protocol and Silane Treatment with a Universal Adhesive on Lithium Disilicate Bond Strength vol.40, pp.4, 2013, https://doi.org/10.2341/14-116-l
  18. Evaluation of Different Types of Lasers in Surface Conditioning of Porcelains: A Review Article vol.8, pp.3, 2013, https://doi.org/10.15171/jlms.2017.19
  19. Microshear bond strength of self-adhesive composite to ceramic after mechanical, chemical and laser surface treatments vol.26, pp.4, 2013, https://doi.org/10.5978/islsm.17-or-19
  20. Simplified Surface Treatments for Ceramic Cementation: Use of Universal Adhesive and Self-Etching Ceramic Primer vol.2018, pp.None, 2013, https://doi.org/10.1155/2018/2598073
  21. Bond Strength of Fiber Posts to Composite Core: Effect of Surface Treatment With Er,Cr:YSGG Laser and Thermocycling vol.9, pp.1, 2013, https://doi.org/10.15171/jlms.2018.09
  22. Laboratory Study of Micro-shear Bond Strength of Two Resin Cements to Leucite Ceramics using Different Ceramic Primers vol.19, pp.8, 2013, https://doi.org/10.5005/jp-journals-10024-2357
  23. Influence of Er;Cr:YSGG Laser on Shear Bond Strength and Color Stability of Lithium Disilicate Ceramics: An In Vitro Study vol.37, pp.8, 2013, https://doi.org/10.1089/photob.2018.4582
  24. Effect of surface treatments on the bond strength of indirect resin composite to resin matrix ceramics vol.11, pp.4, 2013, https://doi.org/10.4047/jap.2019.11.4.223
  25. Evaluation of the repair capacities and color stabilities of a resin nanoceramic and hybrid CAD/CAM blocks vol.12, pp.3, 2013, https://doi.org/10.4047/jap.2020.12.3.140
  26. Shear bond strength of three CAD/CAM ceramics treated by Nd:YAG laser and HF vol.34, pp.21, 2020, https://doi.org/10.1080/01694243.2020.1760479
  27. Effect of Argon Plasma on the Shear Bond Strength of Y-TZP Zirconia Ceramic Resin Interface vol.10, pp.5, 2013, https://doi.org/10.1149/2162-8777/abfc25
  28. Effect of Silane-Containing Universal Adhesives on the Bonding Strength of Lithium Disilicate vol.14, pp.14, 2013, https://doi.org/10.3390/ma14143976
  29. Effect of different surface treatments on surface roughness, phase transformation, and biaxial flexural strength of dental zirconia vol.15, pp.3, 2013, https://doi.org/10.34172/joddd.2021.035