• Title/Summary/Keyword: bond shear strength

Search Result 863, Processing Time 0.03 seconds

A SHEAR BOND STRENGTH OF RESIN CEMENTS BONDED TO PRESSABLE PORCELAIN WITH VARIOUS SURFACE TREATMENTS

  • Lee Jong-Yeop;Im Eui-Bin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.379-386
    • /
    • 2003
  • Statement of problem. Resin cements are widely used in adhesive dentistry specially on all ceramic restorations. It is needed to find out adequate bonding strength between different porcelain surface treatments, commercially available porcelains, and different resin cement systems. Purpose. The purpose of this study was to evaluate shear bond strength of resin cements bonded to porcelains in three different modalities; 5 different porcelain surface treatments, 3 different resin cement systems and 3 different commercially available pressable porcelains. Material and Method. This study consisted of 3 parts. Part I examined the effect of five different surface treatments on the pressable porcelain. Fifty discs (5 mm in diameter and 3 mm in height) of Authentic porcelain were randomly divided into 5 groups (n = 10). The specimens were sanded with 320 grit SiC paper followed by 600 grit SiC paper. The specimens were treated as follow: Group 1-Sandblasting (aluminum oxide) only, Group 2 - sandblasting/ silane, Group 3 - sandblasting/ acid etching/ silane, Group 4 - acid etching only, Group 5 - acid etching/ silane. Part II examined the shear bond strength of 3 different resin cement systems (Duolink, Variolink II, Rely X ARC) on acid etching/ silane treated Authentic pressable porcelain. Part 3 examined the shear bond strength of Duolink resin cement on 3 different pressable porcelains (Authentic, Empress I, Finesse). All cemented specimens were stored in distilled water for 2 hours and tested with Ultradent shear bond strength test jig under Universal Instron machine until fracture. An analysis of variance(ANOVA) test was used to evaluate differences in shear bond strength. Result. The shear bond strength test resulted in the following: (1) Acid etched porcelains recorded greater shear bond strength values to the sandblasted porcelains. (2) Silane treated porcelains recorded greater shear bond strength values to non-silane treated porcelains. (3) There was no significant difference between sandblasting/ acid etching/ silane treated and acid etching/ silane treated porcelains. However those values were much higher than other three groups. (4) The shear bond strength with Variolink II was lower than the value of Duolink or Rely X ARC. (5) The shear bond strength of Finesse was lower than the value of Authentic or Empress I.

STUDIES ON THE BOND BETWEEN COMPOSITE RESIN AND DENTIN TREATED BY DENTIN BONDING AGENTS (상아질 표면 처리에 의한 상아질과 복합레진의 결합에 관한 연구)

  • Youn, Dong-Ho;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.1
    • /
    • pp.36-54
    • /
    • 1992
  • The purpose of this study was to compare the shear bond strengths to ground dentin surfaces of four dentinal bonding agents in 193 teeth. Various dentin surfaces treated with four dentin bonding agents were attached with two restorative composite resins. The effectiveness of the bonding were tested by the monitoring the shear bond strength. The shear bond strengths were measured after 2 hours and 24 hours after surface conditioning with four dentin bonding agents. Effects of EDTA, the additive illumination, and sealer treatments without primer on bond strength to dentin surfaces were assessed. In addition the effects of the thickness of specimens ranging from 0.65 mm to 1.95 mm and the ratio of catalyst and base paste on the bond strength of chemical cure composite resin were estimated. The shear bond strength was determined by testing specimens in the Instron universal testing machine (Model No. 1122) at a crosshead speed of 1.0 mm/min. Following condusions were drawn: 1. The highest mean shear bond strengths of chemical cure composite resin to dentin conditioning with dentin bonding agents aged 2 hours were obtained, and then that was decreased with time followed by EDTA treatment. 2. In light cure composite resin, the shear bond strength was increased following dentin conditioning with bonding agents with time, irradiation time and EDTA treatment except in SB group. 3. The thicker the composite resin specimen was, the less the shear bond strength in chemical cure composite resin was. 4. In light cure composite resin, there was a little change in shear bond strength following dentin conditioning with bonding agents. 5. In chemical cure composite resin, the shear bond strength was the highest in the ratio of 1/1 of catalyst and base part. 6. Without a dentin primer, shear bond strength to dentin conditioned only with UB sealer was the highest among four sealers in light cure composite resin.

  • PDF

A Study on Bond Strength between Fiber Sheet and Concrete for Concrete Surface Preparation and Heating Condition (콘크리트 표면처리와 가열조건에 따른 섬유쉬트와 콘크리트의 부착강도에 관한 연구)

  • Ahn, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.201-207
    • /
    • 2002
  • An advanced fiber sheet has been widely used for strengthening of the concrete structures due to its excellent properties such as high strength and light weight. Bond strength is very important in strengthening the concrete structures using an advanced fiber sheet. This research examines the bond behavior between fiber sheet and concrete, investigates the bond strength by the direct pull-out test and the tensile-shear test. To obtain the tensile-shear strength a double-face shear type bond test is conducted. The primary test variables are the types of concrete surface roughness (disk-grinding/chipping) and retrofitting methods (bonding/injection). Thirty specimens were tested to evaluate the bond strength. It is shown that the average bond strength between fiber sheet and concrete by the direct pull-out test and the tensile-shear test is $22.3{\sim}23.1kgf/cm^2$ $17.92{\sim}19.75kgf/cm^2$, respectively.

Influence of coloring liquids on the shear bond strength between zirconia and veneering ceramic (색소체용액 침투가 지르코니아 및 전장용 세라믹의 전단결합강도에 미치는 영향)

  • Jung, Jong-Hyun;Oh, Gye-Jeong
    • Journal of Technologic Dentistry
    • /
    • v.38 no.4
    • /
    • pp.291-298
    • /
    • 2016
  • Purpose: This study was to evaluate the effect of coloring liquids on the shear bond strength between zirconia and veneering ceramic. Methods: Zirconia(15 mm in diameter, 2.5 mm in thickness; n=40) used in the experiment were divided into 5 groups depending on the coloring liquid. Each specimen were polished using a polishing machine(LaboPol-2, Struers, UK). A cylinder of veneering porcelain(6 mm in diameter, 3 mm in thickness) was fabricated and fired on zirconia surfaces. The shear bond strength was measured using a universal testing machine(Model 4302, Instron, USA). All data were analyzed statistically using a one-way ANOVA and Tukey's multiple comparisons test. After the shear bond test, fracture surfaces were examined by SEM. Results: Colored zirconia showed a higher shear bonding strength than that of uncolored zirconia except for colored zirconia immersed in Zirkonzahn coloring liquid. In particular, colored zirconia immersed in Kuwotech coloring liquid showed the highest shear bond strength. After the shear bond test, mixed failure patterns were mainly observed in the failure between zirconia and veneering ceramic. Conclusion: Coloring liquid enhanced the shear bond strength zirconia and veneering ceramic than uncolored zirconia.

COMPARISON OF SHEAR BOND STRENGTHS OF FOUR DENTINAL ADHESIVES (네가지 상아질 접착제의 전단 결합 강도 비교)

  • Cho, Kyeong-Mee;Hur, Bock;Lee, Hee-Joo
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.280-288
    • /
    • 1996
  • The purpose of this study was to assess comparatively the shear bond strength on dentin of four dentin bonding agents used in conjunction with light-curing composite resins. Clearfil New Bond, Scotchbond Multipurpose Dentin Adhesive, All-Bond 2 and X-R Bond were applicated on labial dentin surfaces just below dentin - enamel juction of bovine incisor teeth. After shear bond strength testing with the universal testing machine, the bonding interface of the specimens were observed under light stereomicroscope. Following results were obtained. 1. The shear bond strength was high in the order of B,C,D,A and group B Scotchbond Multipurpose Dentine Adhesive revealed greater bond strength than Clearfil New Bond and X-R Bond. (p<.001) 2. When using ANOVA and Duncan's multiple range test, there were statistical differences among the four groups, except between group Band C,group D and A. 3. There was no relationship between mode of failure and shear bond strength.

  • PDF

IN VITRO MICRO-SHEAR BOND STRENGTH OF FIVE COMPOSITE RESINS TO DENTIN WITH FIVE DIFFERENT DENTIN ADHESIVES (미세-전단 결합 강도 시험을 이용한 상아질 접착제와 수복용 복합 레진의 호환성에 관한 연구)

  • Chung, Jin-Ho;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.4
    • /
    • pp.353-364
    • /
    • 2004
  • The purpose of this study was to compare and to evaluate the combination use of 5 kinds of dentin adhesive systems and 5 kinds of composite resins using micro-shear bond test. Five adhesive systems (Prime & Bond NT (PBN). Onecoat bond (OC), Excite (EX), Syntac (SY), Clearfil SE bond (CS)) and five composite resins (Spectrum (SP), Synergy Compact (SC), Tetric Ceram (TC), Clearfil AP-X (CA), Z100 (Z1)) were used for this study ($5{\;}{\times}{\;}5{\;}={\;}25group$, n =14/group). The slices of horizontally sectioned human tooth were bonded with each bonding system and each composite resin, and tested by a micro-shear bond strength test. These results were analyzed statistically. The mean micro-shear bond strength of dentin adhesive systems were in order of CS (22.642 MPa), SY (18.368 MPa), EX (14.599 MPa). OC (13.702 MPa). PBN (12.762 MPa). The mean bond strength of self-etching primer system group (CS, SY) in dentin was higher than that of self-priming adhesive system groups (PBN, EX, OC) significantly (P<0.05). The mean bond strength of composite resins was in order of SP (19.008 MPa), CA (17.532 MPa). SC (15.787 MPa), TC (15.068 MPa). Z1 (14.678 MPa). Micro-shear bond strength of SP was stronger than those of other composite resins significantly (P < 0.05). And those of TC and Z1 were weaker than other composite resins significantly (P < 0.05). No difference was found in micro-shear bond strength of composite resin in self-etching primer adhesive system groups (CS, SY) statistically. However, there was significant difference of micro-shear bond strength of composite resin groups in self-priming adhesive systems group (PBN, EX, OC). The combination of composite resin and dentin adhesive system recommended by manufacturer did not represent positive correlation. It didn't seem to be a significant factor.

Bond behaviour at concrete-concrete interface with quantitative roughness tooth

  • Ayinde, Olawale O.;Wu, Erjun;Zhou, Guangdong
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.265-279
    • /
    • 2022
  • The roughness of substrate concrete interfaces before new concrete placement has a major effect on the interface bond behaviour. However, there are challenges associated with the consistency of the final roughness interface prepared using conventional roughness preparation methods which influences the interface bond performance. In this study, five quantitative interface roughness textures with different roughness tooth angles, depths, and tooth distribution were created to ensure consistency of interface roughness and to evaluate the bond behaviour at a precast and new concrete interface using the splitting tensile test, slant shear test, and double-shear test. In addition, smooth interface specimens and two separate the pitting interface roughness were also utilized. Obtained results indicate that the quantitative roughness has a very limited effect on the interface tensile bond strength if no extra micro-roughness or bonding agent is added at the interface. The roughness method however causes enhanced shear bond strength at the interface. Increased tooth depth improved both the tensile and shear bond strength of the interfaces, while the tooth distribution mainly influenced the shear bond strength. Major failure modes of the test specimens include interface failure, splitting cracks, and sliding failure, and are influenced by the tooth depth and tooth distribution. Furthermore, the interface properties were obtained and presented while a comparison between the different testing methods, in terms of bond strength, was performed.

THE SHEAR BOND STRENGTH OF TWO ADHESIVES BONDED TO COMPOSITE RESIN AND GLASS IONOMER CEMENT RESTORATIONS (복합레진과 Glass Ionomer Cement수복물에 대한 Bracket의 접착전단강도)

  • Han, Jae-Ik;Rhee, Byung-Tae
    • The korean journal of orthodontics
    • /
    • v.20 no.3 s.32
    • /
    • pp.583-591
    • /
    • 1990
  • If the bond strength is sufficient to resist orthodontic force, orthodontic brackets can be bonded to restorations. Orthodontic brackets were bonded to composite resin and glass ionomer cement restorations with no-mix adhesive or glass ionomer cement. The shear bond strength of adhesives bonded to restorations was studied in vitro. Orthodontic brackets were bonded to 10 extracted natural teeth, 40 composite resin restorations and 40 glass ionomer restorations. The surfaces of composite resin restorations were roughened or applied with bonding agent (Scothbond) after surface roughening. The surfaces of glass ionomer cement restorations were conditioned with acid etching or applied with Scotchbond to etched surface. The adhesive was no-mix resin or glass ionomer cement. The shear bond strength was measured. The results were as follows: 1. Orthodontic brackets could be bonded to composite resin restorations effectively as they could be bonded to acid etched enamel with no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was not affected by bonding agent greatly. 2. The shear bond strength of no-mix adhesive bonded to acid etched glass ionomer cement restorations was sufficient to resist orthodontic force. However. the fracture risk of glass ionomer cement restorations was increased during debonding. The bonding agent couldn't increase the shear bond strength greatly. 3. The shear bond strength of glass ionomer cement bonded to glass ionomer cement restorations was lower than that of no-mix adhesive. The shear bond strength was sufficient to resist orthodontic force and was greatly decreased by bonding agent. 4. The shear bond strength of glass ionomer cement bonded to composite resin restorations was too low to resist orthodontic force.

  • PDF

A STUDY ON THE SHEAR BOND STRENGTH BETWEEN RESIN-BONDED RETAINERS AND ENAMEL ACCORDING TO THE ADHESIVE RESINS AND RETENTION TYPES (유지형태와 접착제 종류에 따른 수지 접착형 수복물과 법랑질간의 전단결합강도 및 파절양상에 관한 연구)

  • Cho, Mi-Sook;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.662-684
    • /
    • 1995
  • The purpose of this study was to evaluate the shear bond strength between various resin-bonded retainers and enamel according to the adhesive resins and retention types and observe the bond filure modes with scanning electron microscope(SEM). For this purpose, the followin eight sub-groups were tested in shear bond strength : 1) electrochemically etched group(Verabond) using Panavia EX and Superbond C&B 2) tin-plated group(PG-S) using Panavia EX and Superbond C&B 3) salt-treated group(Verabond) using Panavia EX and Superbond C&B 4) meshtreated group(Verabond) using Panavia EX and Superbond C&B. Thermocycling test was conducted on the condition of 15 second dwell time each in $5^{\circ}C$ and $55^{\circ}C$bath. Shear bond strength was measured by Instron Universal Testing Machine(medel 1125). The obtained results were as follows : 1. After thermocycling, the shear bond strengths of tin-plated group and electrochemically etched group were significantly greater than those of salt-treated group and mesh-treated group. And the shear bond strength of Panavia EX was greater than that of Superbond C&B with salt-treated group and tin-plated group(p<0.05). 2. Before thermocycling, electrochemically etched group using Superbond C&B produced the greatest shear bond strength(p<0.01). 3. The shear bond strength of electrochemically etched group using Superbond C&B was significantly decreased after thermocycling(p<0.01). 4. In observation of bond failure modes before thermocycling, Panavia EX highly exhibited enamel fracture. Tin-plated group using Superbond C&B adhesive failure between metal and resin and electrochemically etched group using Superbond C&B exhibited adhesive failure between enamel and rdsin. 5. In observation of failure modes after thermocycling, Panavia EX exhibited cohesive failure and Superbond C&B exhibited adhesive failure between resin and metal.

  • PDF

The Effects of Various Metal Surface Treatments on the Shear Bond Strength between Titanium Denture Base and Relined Resins (타이타니움 의치상에 대한 다양한 금속표면처리제의 적용이 첨상레진과의 결합강도에 미치는 영향)

  • Eun, Jun-Young;Cho, In-ho;Lee, Jong-Hyuk
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.137-148
    • /
    • 2006
  • The purpose of this study was to evaluate the effect of various metal surface treatments on the shear bond strength between titanium denture base and relined resins. The surfaces of commercially pure(cp) titanium were sandblasted with $50{\mu}m$ $Al_2O_3$ for 20 seconds and each group was treated with MR $Bond^{(R)}$, Alloy $Primer^{(R)}$, and Super-Bond $C&B^{(R)}$ accordingly. The specimens were completed by application of relining resins. The specimens were stored in room temperature. And the shear bond strength of the specimens were measured with the MTS universal testing $machine^{(R)}$. The results were as follows: 1. In comparison with the relining materials, $Kooliner^{(R)}$ groups showed statistically higher shear bond strength than Tokuyama Rebase $II^{(R)}$ groups(p<0.05). 2. Comparing shear bond strength, according to surface treatment, Super-bond $C&B^{(R)}$ groups showed the highest bond strength and were significantly higher than the other three groups(p<0.05). Alloy $Primer^{(R)}$ groups showed no significant difference with the MR $Bond^{(R)}$ groups, but was significantly higher than the sandblasting-only groups(p<0.05). 3. Comparing surface treatment in each groups, for two types of relining resin, the group which applies $Kooliner^{(R)}$ and Super-bond $C&B^{(R)}$ showed the highest bond strength and showed significant difference compared to the other groups(p<0.05). When using Tokuyama Rebase $II^{(R)}$, Super-bond C&B group showed the highest bond strength, but there were no significant difference compared to the Alloy $Primer^{(R)}$ group. In this limited study, applying $Kooliner^{(R)}$ and Super-Bond $C&B^{(R)}$ after sandblasting is considered to be advantageous for relining of titanium base dentures.