• Title/Summary/Keyword: bond graph modeling

Search Result 38, Processing Time 0.031 seconds

Bond Graph Modeling and Control for an Automatic Transmission (자동변속기의 본드선도 모델링 및 제어)

  • 강민수;강조웅;김종식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.425-430
    • /
    • 2002
  • An automatic transmission model using the bond graph techniques is developed for analyzing shift characteristics of vehicles. Bond graph models can be systemically manipulated to yield state space equations of standard form. Bond graph techniques are applied for modeling overall automatic transmission systems and shift models. A fuzzy controller is synthesized for the verification of a shifting model in the ${1^st} gear to the {2^nd}$ gear. Simulation results show the fitness of models by the bond graph techniques.

  • PDF

Bond graph modeling approach for piezoelectric transducer design (압전 트랜스듀서 설계를 위한 bond graph 모델링)

  • 문원규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.265-271
    • /
    • 1997
  • A bond graph modeling approach which is equivalent to a finite element method is formulated in the case of the piezoelectric thickness vibrator. This formulation suggests a new definition of the generalized displacements for a continuous system as well as the piezoelectric thickness vibrator. The newly defined coordinates are illustrated to be easily interpreted physically and easily used in analysis of the system performance. Compared to the Mason equivalent circuit model, the bond graph model offers the primary advantage of physical realizability. Compared to circuit models based on standard discrete electrical elements, the main advantage of the bond graph model is a greater physical accuracy because of the use of multiport energic elements. While results are presented here for the thickness vibrator, the modeling method presented is general in scope and can be applied to arbitrary physical systems.

  • PDF

A Study on the Induction Method of Transfer Function of Bond Graph using Mason's Rule (메이슨의 공식을 이용한 본드그래프의 전달함수 유도법에 관한 연구)

  • 한창수;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.66-75
    • /
    • 1998
  • In many case of optimal design and sensitivity analysis, obtaining of transfer function between input and output variables is a difficult and time-consuming problem. The bond graph modeling is a method that is used for making it easy to analyze complex systems composed of mechanical and electrical parts. It gives us a simple and systematic tool to get state-space equations easily. And we can obtain the transfer function graphically using bond graph and Mason's rule. This paper shows how bond graphs are converted to block diagram and how Mason's rule is applied. And the simple direct method to obtain transfer function from bond graph is introduced. As a example, induction of transfer function of electric power steering composed of mechanical and electrical parts will be done.

  • PDF

Dynamically-Correct Automatic Transmission Modeling (동적 특성을 고려한 자동변속기의 모델링)

  • 김정호;조동일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.73-85
    • /
    • 1997
  • An automatic transmission is an important element of automotive power systems that allows a driving convenience. Compared to a manual transmission, however, it has a few problems in efficiency, shift feel, and maintenance. To improve these, it is imperative to understand the dynamics of automatic transmissions. This paper develops a dynamically-correct model of an automatic transmission, using the bond graph method. The bond graph method is ideally suited for modeling power systems, because the method is based on generalized power variables. The bond graph method is capable of providing correct dynamic constraints and kinematic constraints, as well as the governing differential equations of motion. The bond graph method is applied to 1-4 in-gear ranges, as well as various upshifts and downshifts of an automatic transmission, which allows an accurate simulation of an automatic transmission. Conventional automatic transmission models have no dynamic constraint, which do not allow correct simulation studies.

  • PDF

A new stability and sensitivity design and diagnosis approach

  • Sari, Ali;Korkmaz, Kasim A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.683-690
    • /
    • 2017
  • In the stability and sensitivity design and diagnosis approaches, there are various methodologies available. Bond graph modeling by lumping technique is one of the universal methodologies in methodical analysis used by many researchers in all over the world. The accuracy of the method is validated in different arenas. Bond graphs are a concise, pictorial representation of the energy storage, dissipation and exchange mechanisms of interacting dynamic systems, subsystems and components. This paper proposes a bond graph modeling for distributed parameter systems using lumping techniques. Therefore, a steel frame structure was modeled to analyze employing bond graph modeling of distributed system using lumping technique. In the analytical part, the effectiveness of bond graphs to model this system is demonstrated. The dynamic responses of the system were computed and compared with those computed from the finite element analysis. The calculated maximum deflection time histories were found to be comparable. The sensitivity and the stability of the steel frame structure was also studied in different aspects. Thus, the proposed methodology, with its simplicity, can be used for stability and sensitivity analyses as alternative to finite element method for steel structures. The major value brought in the practical design is the simplicity of the proposed method for steel structures.

Understanding of dynamic system properties in the frequency domain using bond graphs (본드선도를 이용한 동적시스템의 주파수역 특성이해)

  • Park, Jeon-Soo;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.801-810
    • /
    • 1998
  • Modeling and analysis of dynamic systems generally demand their resutls to be interpreted each other with a physical sense. It sometimes requires that there should exist a unified tool in the treatment of dynamic systems which can be applied to both their modeling and analysis equally. This paper shows how models just after the progress of modeling via bond graph standards are converted to ones which are appropriate for analyzing a dynamic system in the frequency domain. Four bond graph prototypes are introduced to obtain frequency properties of dynamic systems such as zero stability, relative order, zero and pole dynamics, etc. directly from bond graphs, and the method are proposed which reduces nearly all models of bond graph standards to one of the prototypes without any change of physical similarity. This procedure as a tool for the structural reduction of bond graphs and finding frequency properties of a dynamic system is further investigated to survey its effectiveness through an example.

Bond Graph Modeling for Piezoelectric Transducers (수중 음향 트랜스듀서 용 압전 소자의 모델링 기법)

  • 문원규
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.129-132
    • /
    • 1998
  • A bond graph modeling approach which is equivalent to a finite element method is formulated in the case of the piezoelectric thickness vibrator. This formulation suggests a new definition of the generalized displacements for a continuous system as well as the piezoelectric thickness vibrator. The newly defined coordinates are illustrated to be easily interpreted physically and easily used in analysis of the system performance. The bond graph model offers the primary advantage of physical realizability and has a greater physical accuracy because of the use of multiport energic elements. While results are presented is general in scope and can be applied to arbitrary physical systems.

  • PDF

Bond graph modeling and multivariable control of maglev system with a combined lift and guidance (편심배치방식 자기부상 시스템의 본드선도 모델링 및 다변수 제어)

  • 박전수;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1091-1097
    • /
    • 1991
  • A logical and systematic procedure to derive a mathematical model for magnetically levitation(maglev) systems with a combined lift and guidance is developed by using and graph. First, bond graph is constructed for the energy-feeding system with magnetic leakage flux. And, the overall maglev system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond notations. Finally, the LQG/LTR control systems are designed for single-input single-output and for multi-input multi-output maglev systems. In this paper, it has been shown that the bond graph is an excellent method for modeling multi-energy domain systems such as maglev systems and the multivariable control system is required to improve the performance of the maglev system with a combined lift and guidance.

  • PDF

Using of Scattering Bond Graph Methodology for a Physical Characteristics Analysis of “D-CRLH” Transmission Line

  • Taghouti, Hichem;Jmal, Sabri;Mami, Abdelkader
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.943-950
    • /
    • 2016
  • In this paper, we propose to analyze the physical characteristics of a planar dual-composite right-left handed transmission line by a common application of Bond Graph approach and Scattering formalism (Methodology S.BG). The technique, we propose consists, on the one hand, of modeling of a dual composite right-left metamaterial transmission line (D-CRLH-TL) by Bond Graph approach, and, it consists of extracting the equivalent circuit of this studied structure. On the other hand, it consists to exploiting the scattering parameters (Scattering matrix) of the DCRLH-TL using the methodology which we previously developed since 2009. Finally, the validation of the proposed and used technique is carried out by comparisons between the simulations results with ADS and Maple (or MatLab).

A Study on the Modeling of Ship Energy System Using Bond Graph (Bond Graph를 이용한 선박 에너지 시스템 모델링 연구)

  • Sang-Won Moon;Won-Sun Ruy
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.19-28
    • /
    • 2024
  • Environmental regulations are becoming more stringent in response to climate change, especially concerning marine pollution caused by ship emissions. Large ships are adjusting by integrating technologies to reduce pollutant emissions and transitioning to eco-friendly fuels such as low-sulfur oil and LNG. However, small ships face space constraints for installing LNG propulsion systems and the risk of power depletion with pure electric propulsion. Consequently, there's growing interest in researching hybrid propulsion methods that combine electricity and diesel for smaller vessels. Hybrid propulsion systems utilize diverse energy sources, requiring an effective method for evaluating their efficiency. This study proposes employing Bond graph modeling to comprehensively analyze energy dynamics within hybrid propulsion systems, facilitating better understanding and optimization of their efficiency. Modeling of the ship's energy system using Bond graphs will be able to provide a framework for integrating various energy sources and evaluating their effects.