• Title/Summary/Keyword: bolts

Search Result 745, Processing Time 0.025 seconds

Assessment of titanium alloy bolts for structural applications

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.553-568
    • /
    • 2022
  • This paper explored the viability of utilising titanium alloy bolts in the construction industry through an experimental programme, where a total of sixty-six titanium alloy (Ti/6Al/4V) bolts were tested under axial tension, pure shear and combined tension and shear. In addition, a series of Charpy V-notch specimens machined from titanium alloy bolts, conventional high-strength steel bolts, austenitic and duplex stainless steel bolts were tested for impact toughness comparisons. The obtained experimental results demonstrated that the axial tensile and pure shear capacities of titanium alloy bolts can be reasonably estimated by the current design standards for steel structures (Eurocode 3, AS 4100 and AISC 360). However, under the combined tension and shear loading conditions, significant underestimation by Eurocode 3 and unsafe predictions through AS 4100 and AISC 360 indicate that proper modifications are necessary to facilitate the safe and economic use of titanium alloy bolts. In addition, numerical models were developed to calibrate the fracture parameters of the tested titanium alloy bolts. Furthermore, a design-based selection process of titanium alloy bolts in the structural applications was proposed, in which the ultimate strength, ductility performance and corrosion resistance (including galvanic corrosion) of titanium alloy bolts was mainly considered.

The Static Strength Analysis of Prying Action for T-flange Shape Structure Using F10T High Strength Bolt (F10T 고장력 볼트를 이용한 T-형 플랜지형 구조물의 Prying Action에 따른 정적강도 해석)

  • Park, Myung-Kyun;Lee, Joong-Won;Koo, Bon-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2008
  • This paper presents and discusses the experimental results on the F10T high strength bolts used in the T-flange joint structure. The experimental works were carried out for the parameters which are flange web thickness, the distance between bolts, prying ratio. The results show that the working stress imposed to bolts decreases as the flange web thickness increases on the other hand the imposed stress to the bolts increases as the distance between two bolts increases. In other words the strength of the T-flange joint increased as the web flange thickness increases and the distance between two bolts decreases. The prying ratio is increased as the distance between two bolts increases and as the flange web thickness decreases However, the degree of stress decrease in flange thickness variation is not that high as the distance variation between two bolts. Finally the equation for predicting the failure stress in T-flange joint structure using F10T high strength bolts was suggested.

Behaviour and design of Grade 10.9 high-strength bolts under combined actions

  • Li, Dongxu;Uy, Brian;Wang, Jia;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.35 no.3
    • /
    • pp.327-341
    • /
    • 2020
  • The use of high-strength steel and concrete in the construction industry has been gaining increasing attention over the past few decades. With it comes the need to utilise high-strength structural bolts to ensure the design load to be transferred safely through joint regions, where the space is limited due to the reduced structural dimensions. However, research on the behaviour of high-strength structural bolts under various loading combinations is still insufficient. Most of the current design specifications concerning high-strength structural bolts were established based on a very limited set of experimental results. Moreover, as experimental programs normally include limited design parameters for investigation, finite element analysis has become one of the effective methods to assist the understanding of the behaviour of structural components. An accurate and simple full-range stress-strain model for high-strength structural bolts under different loading combinations was therefore developed, where the effects of bolt fracture was included. The ultimate strength capacities of various structural bolts obtained from the present experimental program were compared with the existing design provisions. Furthermore, design recommendations concerning the pure shear and tension, as well as combined shear and tension resistance of Grade 10.9 high-strength structural bolts were provided.

Improving support performances of cone bolts by a new grout additive and energy absorber

  • Komurlu, Eren
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.237-250
    • /
    • 2022
  • The cone bolts with expanded front ends supply improved anchoring performances and increase energy absorbing capacities due to ploughing in the grouted drills. Within this study, use of a novel energy absorber for the cone bolt heads were investigated to assess its design in terms of supplying high support performances. Additionally, different grout material designs were tested to investigate whether the energy absorption capacities of the rock bolts can be improved using a silicone based thermoset polymer (STP) additive. To determine load bearing and energy absorption capacities, a series of deformation controlled pull-out tests were carried out by using bolt samples grouted in rock blocks. According to the results obtained from this study, maximum load bearing capacities of cone bolts are similar and mostly depend on the steel material strength, whereas the energy absorption capacity was determined to significantly vary in accordance with the displacement limits of the shanks. As a result of using STP additive and new polyamide absorber rings, displacement limits without the steel failure increase. The STP additive was found to improve the energy absorption capacities of grouted cone bolts. The absorber rings designed within this study were also assessed to be highly effective and able to double up the energy absorption capacities of the cone bolts.

A Proposal of Steel Structure Beam-to-Column Connection Appling High Strength Bolt Improved in Deformation Capacity (고력볼트의 변형능력을 향상시킨 강구조 보-기둥 접합부의 제안)

  • Kim, Seung-Goo;Lee, Seung-Jae;Oh, Sang-Hoon;Kang, Cang-Hoon
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.182-188
    • /
    • 2006
  • This study propose cutting body portion-high strength bolts to improve deformation capacity of High strength bolts, which are the mechanical fasteners used for End-plate connection. And, we report that loading test results of steel beam-to-column connection using high deformation capacity-high strength bolts in accordance with SAC2000 loading program. As a result, the initial stiffness and the maximum strength of the connection using high deformation capacity-high strength bolts, are approximately the same in comparison with those of the end-plate connection using the existing high strength bolts. But the deformation capacity of the connection is more than twice as much as those.

  • PDF

The Study on Elongation and Torque Measurement in Large Bolt by using Ultrasonic Technology (초음파를 이용한 대형볼트 신장량 및 체결력 측정연구)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.40-46
    • /
    • 2009
  • This study on the bolt elongation and torque measuring method by ultrasonic nod-destructive method. In the past, The dial gage was used for the elongation measurement of gas turbine bolts. The purpose of this study is to improve the traditional bolt elongation measurement method. The old method using dial gage measures the elongation of the gas turbine bolt. If the length differences among the loading bolts are within the required range, The loading torques of bolts consider as acceptable. But this method can not give the information about torque differences among the loading bolts. It could bring out vibration of turbine due to loading torque differences among the bolts. So the elongation and torque must be measured simultaneously. The new technology using ultrasonic non-destructive method can give the information about bolt elongation and torque. The ultrasonic method basically measures the speed in the bolt material for the calculation the bolt elongation. But the ultrasonic speed varies according to temperature and loading torque of bolts. So the factors of temperature and loading power were investigated and reflected to the calculation of bolt elongation and torque. The results of this study shows the big difference among the bolts torque in the old method and the torque differences among the bolts can be adjusted by reflecting the result of this study. And this torque adjusting method can decrease gas turbine vibration problem due to torque difference among the bolts. So this paper shows ultrasonic method is better than old method for the measurement of bolt elongation and torque.

  • PDF

Estimation of Safety and Economical Efficiency of Large High Tension Bolted Joints (대직경 고장력볼트 이음부의 안전성 및 경제성 평가)

  • Sung, Ki-Tae;Kyung, Kab-Soo;Lee, Seung-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.97-105
    • /
    • 2009
  • This study was conducted for the purpose of examinating the safety and economical efficiency of large high tension bolted joints. The specimen using F10T-M30 large high strength bolts has been selected and static tensile test has been conducted to evaluate the slip characteristics. In addition, finite element analysis has been carried out to estimate the number of required bolts. As a result, the average slip coefficient of M30 high strength bolts exceeded 0.4 - the standard in highway bridge design specification - and has satisfied the slip strength, which is the same as that of M22 high strength bolts. In addition, if F13T-M22 high strength bolts were applied, the number of required bolts decreased by 21%, and if F10T-M30 high strength bolts were applied, the number of required bolts decreased by 46%, that leads to the conclusion that the economical efficiency in accordance with diametering of high strength bolts was now verified.

Behavior of Grouted Bolts in Consideration of Seepage Forces (침투수력을 고려한 전면접착형 록볼트의 거동연구)

  • Lee, In-Mo;Kim, Kyung-Hwa;Shin, Jong-Ho;Park, Jong-Kwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1259-1266
    • /
    • 2005
  • In a NATM tunnel, fully grouted bolts are widely used as part of supporting system. Grouted bolts play an important role not as to take some parts of load acting on a tunnel lining but as to reinforce the ground adjacent the tunnel. In conjunction with tunnel construction, the presence of groundwater may pose a number of difficulties. With respect to tunnel design, influences of groundwater on tunnel behavior have been considered in many aspects. However, the effect on grouted bolts has been rarely investigated. In this study, the behavior of grouted bolts, which are affected by the seepage forces, was examined. To investigate the effects of seepage forces, the theoretical solutions for a drained condition were also found. Based on the theoretical solutions, ground reaction curves considering seepage forces were obtained. By comparing the ground reaction curves supported by grouted bolts with those for the unsupported cases, the effect of reinforcement was evaluated. Finally, through comparison between supported ground reaction curves in the drained condition and those in the case of groundwater flow, it was found that the grouted bolts are more structurely beneficial when the seepage occurs towards the tunnel than when there is no groundwater flow.

  • PDF

A Laboratory Test and Numerical Analysis to Determine the Number of Additional Installation of Face Bolts due to the Deviated Bolts from the Horizontal Direction (막장볼트가 수평으로부터 벗어나는 경우 추가해 주어야 하는 본수에 대한 실내실험 및 수치해석)

  • Seo, Kyoung-Won;Lee, Sung-Won;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.345-354
    • /
    • 2006
  • During installation of face bolts, they are often deviated from the designed horizontal direction. In this study, a laboratory test and numerical analysis were conducted to examine the change of support effect by them. Also, the number of bolts to be added for achieving the designed support effect was considered. It was verified in this study that the horizontal installation is more effective. Under the test condition of this study, 1.5 bolts/section should be added in the face of which the installation density was 3 bolts/section when the bolts were installed with $R15^{\circ}$ angle from the horizontal position.

Ultrasonic Inspection of Cracks in Stud Bolts of Reactor Vessels in Nuclear Power Plants by Signal Processing of Differential Operation

  • Choi, Sang-Woo;Lee, Joon-Hyun;Oh, Won-Deok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.439-445
    • /
    • 2005
  • The stud bolt is one of crucial parts for safe operation of reactor vessels in nuclear power plants, Crack initiation and propagation were reported in stud bolts that arc used for closure of reactor vessel and head, Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure which could induce radioactive leakage from nuclear reactor, In conventional ultrasonic testing for inspection of stud bolts, cracks are detected by using shadow effect It takes too much time to inspect stud bolts by using conventional ultrasonic technique. In addition, there were numerous spurious signals reflected from every oblique surfaces of thread, In this study, the signal processing technique for enhancing conventional ultrasonic technique was introduced for inspecting stud bolts. The signal processing technique provides removing spurious signal reflected from every oblique surfaces of thread and enhances detectability of defects. Detectability for small crack was enhanced by using this signal processing in ultrasonic inspection of stud bolts in Nuclear Power Plants.